Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239295

RESUMO

Background: Plasmodium falciparum possesses a cobalamin-dependent methionine synthase (MS). MS is putatively encoded by the PF3D7_1233700 gene, which is orthologous and syntenic in Plasmodium. However, its vulnerability as an antimalarial target has not been assessed. Methods: We edited the PF3D7_1233700 and PF3D7_0417200 (dihydrofolate reductase-thymidylate synthase, DHFR-TS) genes and obtained transgenic P. falciparum parasites expressing epitope-tagged target proteins under the control of the glmS ribozyme. Conditional loss-of-function mutants were obtained by treating transgenic parasites with glucosamine. Results: DHFR-TS, but not MS mutants showed a significant proliferation defect over 96 h, suggesting that P. falciparum MS is not a vulnerable antimalarial target.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Plasmodium falciparum/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase
2.
Int J Antimicrob Agents ; 62(1): 106838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160237

RESUMO

A major threat to the goal of eliminating malaria, particularly in Southeast Asia, is the spread of Plasmodium falciparum resistant to artemisinin-based combination therapies. P218 is a drug candidate designed to combat antifolate-sensitive and -resistant parasites. However, there is no evidence that P218 is effective against artemisinin-resistant P. falciparum. This report investigated the susceptibilities of 10 parasite isolates from Southeast Asia to P218 and other antimalarial drugs. All isolates with different levels of artemisinin resistance were genetically distinct from one another, although common haplotypes associated with antimalarial resistance were identified. All isolates were highly resistant to pyrimethamine, and none of them were significantly less sensitive to P218 than the pyrimethamine-resistant laboratory strain V1/S. Significant differences in sensitivity to other types of antimalarials (mefloquine, atovaquone and chloroquine) compared with V1/S were found for some isolates, although the differences were not clinically relevant. P218 is thus efficacious against multi-drug (including artemisinin-resistant P. falciparum.


Assuntos
Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos , Antagonistas do Ácido Fólico/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum , Pirimetamina/farmacologia
3.
PeerJ ; 11: e15187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131988

RESUMO

Background: The spread of artemisinin (ART)-resistant Plasmodium falciparum threatens the control of malaria. Mutations in the propeller domains of P. falciparum Kelch13 (k13) are strongly associated with ART resistance. Ferredoxin (Fd), a component of the ferredoxin/NADP+ reductase (Fd/FNR) redox system, is essential for isoprenoid precursor synthesis in the plasmodial apicoplast, which is important for K13-dependent hemoglobin trafficking and ART activation. Therefore, Fd is an antimalarial drug target and fd mutations may modulate ART sensitivity. We hypothesized that loss of Fd/FNR function enhances the effect of k13 mutation on ART resistance. Methods: In this study, methoxyamino chalcone (C3), an antimalarial compound that has been reported to inhibit the interaction of recombinant Fd and FNR proteins, was used as a chemical inhibitor of the Fd/FNR redox system. We investigated the inhibitory effects of dihydroartemisinin (DHA), C3, and iron chelators including deferiprone (DFP), 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) and deferiprone-resveratrol hybrid (DFP-RVT) against wild-type (WT), k13 mutant, fd mutant, and k13 fd double mutant P. falciparum parasites. Furthermore, we investigated the pharmacological interaction of C3 with DHA, in which the iron chelators were used as reference ART antagonists. Results: C3 showed antimalarial potency similar to that of the iron chelators. As expected, combining DHA with C3 or iron chelators exhibited a moderately antagonistic effect. No differences were observed among the mutant parasites with respect to their sensitivity to C3, iron chelators, or the interactions of these compounds with DHA. Discussion: The data suggest that inhibitors of the Fd/FNR redox system should be avoided as ART partner drugs in ART combination therapy for treating malaria.


Assuntos
Antimaláricos , Chalcona , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum/genética , Ferredoxinas/química , Chalcona/farmacologia , Deferiprona/farmacologia , Malária Falciparum/tratamento farmacológico , Ferredoxina-NADP Redutase , Quelantes de Ferro/farmacologia
4.
PLoS One ; 17(11): e0276956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331983

RESUMO

The Plasmodium falciparum human malaria parasite genome is incompletely annotated and does not accurately represent the transcriptomic diversity of this species. To address this need, we performed long-read transcriptomic sequencing. 5' capped mRNA was enriched from samples of total and nuclear-fractionated RNA from intra-erythrocytic stages and converted to cDNA library. The cDNA libraries were sequenced on PacBio and Nanopore long-read platforms. 12,495 novel isoforms were annotated from the data. Alternative 5' and 3' ends represent the majority of isoform events among the novel isoforms, with retained introns being the next most common event. The majority of alternative 5' ends correspond to genomic regions with features similar to those of the reference transcript 5' ends. However, a minority of alternative 5' ends showed markedly different features, including locations within protein-coding regions. Alternative 3' ends showed similar features to the reference transcript 3' ends, notably adenine-rich termination signals. Distinguishing features of retained introns could not be observed, except for a tendency towards shorter length and greater GC content compared with spliced introns. Expression of antisense and retained intron isoforms was detected at different intra-erythrocytic stages, suggesting developmental regulation of these isoform events. To gain insights into the possible functions of the novel isoforms, their protein-coding potential was assessed. Variants of P. falciparum proteins and novel proteins encoded by alternative open reading frames suggest that P. falciparum has a greater proteomic repertoire than the current annotation. We provide a catalog of annotated transcripts and encoded alternative proteins to support further studies on gene and protein regulation of this pathogen.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Transcriptoma , Plasmodium falciparum/genética , Parasitos/genética , Proteômica , Isoformas de Proteínas/genética , Processamento Alternativo , Malária Falciparum/genética
5.
Malar J ; 21(1): 302, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303209

RESUMO

BACKGROUND: The resistance of Plasmodium falciparum to artemisinin-based (ART) drugs, the front-line drug family used in artemisinin-based combination therapy (ACT) for treatment of malaria, is of great concern. Mutations in the kelch13 (k13) gene (for example, those resulting in the Cys580Tyr [C580Y] variant) were identified as genetic markers for ART-resistant parasites, which suggests they are associated with resistance mechanisms. However, not all resistant parasites contain a k13 mutation, and clearly greater understanding of resistance mechanisms is required. A genome-wide association study (GWAS) found single nucleotide polymorphisms associated with ART-resistance in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2), and crt (chloroquine resistance transporter), in addition to k13 gene mutations, suggesting that these alleles contribute to the resistance phenotype. The importance of the FD and ARPS10 variants in ART resistance was then studied since both proteins likely function in the apicoplast, which is a location distinct from that of K13. METHODS: The reported mutations were introduced, together with a mutation to produce the k13-C580Y variant into the ART-sensitive 3D7 parasite line and the effect on ART-susceptibility using the 0-3 h ring survival assay (RSA0-3 h) was investigated. RESULTS AND CONCLUSION: Introducing both fd-D193Y and arps10-V127M into a k13-C580Y-containing parasite, but not a wild-type k13 parasite, increased survival of the parasite in the RSA0-3 h. The results suggest epistasis of arps10 and k13, with arps10-V127M a modifier of ART susceptibility in different k13 allele backgrounds.


Assuntos
Antimaláricos , Apicoplastos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/parasitologia , Apicoplastos/metabolismo , Estudo de Associação Genômica Ampla , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mutação
6.
J Pers Med ; 11(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834582

RESUMO

The increasing availability of next generation sequencing (NGS) for personal genomics could promote pharmacogenomics (PGx) discovery and application. However, current tools for analysis and interpretation of pharmacogenomic variants from NGS data are inadequate, as none offer comprehensive analytic functions in a simple, web-based platform. In addition, no tools exist to analyze human leukocyte antigen (HLA) genes for determining potential risks of immune-mediated adverse drug reaction (IM-ADR). We describe PharmVIP, a web-based PGx tool, for one-stop comprehensive analysis and interpretation of genome-wide variants obtained from NGS platforms. PharmVIP comprises three main interpretation modules covering analyses of pharmacogenes involved in pharmacokinetics, pharmacodynamics and IM-ADR. The Guideline module provides Clinical Pharmacogenetics Implementation Consortium (CPIC) drug guideline recommendations based on the translation of genotypic data in genes having guidelines. The HLA module reports HLA genotypes, potential adverse drug reactions, and the relevant drug guidelines. The Pharmacogenes module is employed for prioritizing variants according to variant effect on gene function. Detailed, customizable reports are provided as exportable files and as an interactive web version. PharmVIP is a new integrated NGS workflow for the PGx community to facilitate discovery and clinical application.

7.
PeerJ ; 9: e11983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527439

RESUMO

BACKGROUND: The genome of the human malaria parasite Plasmodium falciparum is poorly annotated, in particular, the 5' capped ends of its mRNA transcripts. New approaches are needed to fully catalog P. falciparum transcripts for understanding gene function and regulation in this organism. METHODS: We developed a transcriptomic method based on next-generation sequencing of complementary DNA (cDNA) enriched for full-length fragments using eIF4E, a 5' cap-binding protein, and an unenriched control. DNA sequencing adapter was added after enrichment of full-length cDNA using two different ligation protocols. From the mapped sequence reads, enrichment scores were calculated for all transcribed nucleotides and used to calculate P-values of 5' capped nucleotide enrichment. Sensitivity and accuracy were increased by combining P-values from replicate experiments. Data were obtained for P. falciparum ring, trophozoite and schizont stages of intra-erythrocytic development. RESULTS: 5' capped nucleotide signals were mapped to 17,961 non-overlapping P. falciparum genomic intervals. Analysis of the dominant 5' capped nucleotide in these genomic intervals revealed the presence of two groups with distinctive epigenetic features and sequence patterns. A total of 4,512 transcripts were annotated as 5' capped based on the correspondence of 5' end with 5' capped nucleotide annotated from full-length cDNA data. DISCUSSION: The presence of two groups of 5' capped nucleotides suggests that alternative mechanisms may exist for producing 5' capped transcript ends in P. falciparum. The 5' capped transcripts that are antisense, outside of, or partially overlapping coding regions may be important regulators of gene function in P. falciparum.

8.
PeerJ ; 7: e6713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024761

RESUMO

BACKGROUND: Hypusination is an essential post-translational modification in eukaryotes. The two enzymes required for this modification, namely deoxyhypusine synthase (DHS) and deoxyhypusine hydrolase are also conserved. Plasmodium falciparum human malaria parasites possess genes for both hypusination enzymes, which are hypothesized to be targets of antimalarial drugs. METHODS: Transgenic P. falciparum parasites with modification of the PF3D7_1412600 gene encoding PfDHS enzyme were created by insertion of the glmS riboswitch or the M9 inactive variant. The PfDHS protein was studied in transgenic parasites by confocal microscopy and Western immunoblotting. The biochemical function of PfDHS enzyme in parasites was assessed by hypusination and nascent protein synthesis assays. Gene essentiality was assessed by competitive growth assays and chemogenomic profiling. RESULTS: Clonal transgenic parasites with integration of glmS riboswitch downstream of the PfDHS gene were established. PfDHS protein was present in the cytoplasm of transgenic parasites in asexual stages. The PfDHS protein could be attenuated fivefold in transgenic parasites with an active riboswitch, whereas PfDHS protein expression was unaffected in control transgenic parasites with insertion of the riboswitch-inactive sequence. Attenuation of PfDHS expression for 72 h led to a significant reduction of hypusinated protein; however, global protein synthesis was unaffected. Parasites with attenuated PfDHS expression showed a significant growth defect, although their decline was not as rapid as parasites with attenuated dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) expression. PfDHS-attenuated parasites showed increased sensitivity to N 1-guanyl-1,7-diaminoheptane, a structural analog of spermidine, and a known inhibitor of DHS enzymes. DISCUSSION: Loss of PfDHS function leads to reduced hypusination, which may be important for synthesis of some essential proteins. The growth defect in parasites with attenuated Pf DHS expression suggests that this gene is essential. However, the slower decline of PfDHS mutants compared with PfDHFR-TS mutants in competitive growth assays suggests that PfDHS is less vulnerable as an antimalarial target. Nevertheless, the data validate PfDHS as an antimalarial target which can be inhibited by spermidine-like compounds.

9.
PeerJ ; 6: e5818, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30397543

RESUMO

BACKGROUND: Sugarcane is an important global food crop and energy resource. To facilitate the sugarcane improvement program, genome and gene information are important for studying traits at the molecular level. Most currently available transcriptome data for sugarcane were generated using second-generation sequencing platforms, which provide short reads. The de novo assembled transcripts from these data are limited in length, and hence may be incomplete and inaccurate, especially for long RNAs. METHODS: We generated a transcriptome dataset of leaf tissue from a commercial Thai sugarcane cultivar Khon Kaen 3 (KK3) using PacBio RS II single-molecule long-read sequencing by the Iso-Seq method. Short-read RNA-Seq data were generated from the same RNA sample using the Ion Proton platform for reducing base calling errors. RESULTS: A total of 119,339 error-corrected transcripts were generated with the N50 length of 3,611 bp, which is on average longer than any previously reported sugarcane transcriptome dataset. 110,253 sequences (92.4%) contain an open reading frame (ORF) of at least 300 bp long with ORF N50 of 1,416 bp. The mean lengths of 5' and 3' untranslated regions in 73,795 sequences with complete ORFs are 1,249 and 1,187 bp, respectively. 4,774 transcripts are putatively novel full-length transcripts which do not match with a previous Iso-Seq study of sugarcane. We annotated the functions of 68,962 putative full-length transcripts with at least 90% coverage when compared with homologous protein coding sequences in other plants. DISCUSSION: The new catalog of transcripts will be useful for genome annotation, identification of splicing variants, SNP identification, and other research pertaining to the sugarcane improvement program. The putatively novel transcripts suggest unique features of KK3, although more data from different tissues and stages of development are needed to establish a reference transcriptome of this cultivar.

10.
PeerJ ; 6: e5527, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186694

RESUMO

BACKGROUND: A key event in human development is the establishment of erythropoietic progenitors in the bone marrow, which is accompanied by a fetal-to-adult switch in hemoglobin expression. Understanding of this event could lead to medical application, notably treatment of sickle cell disease and ß-thalassemia. The changes in gene expression of erythropoietic progenitor cells as they migrate from the fetal liver and colonize the bone marrow are still rather poorly understood, as primary fetal liver (FL) tissues are difficult to obtain. METHODS: We obtained human FL tissue and adult peripheral blood (AB) samples from Thai subjects. Primary CD34+ cells were cultured in vitro in a fetal bovine serum-based culture medium. After 8 days of culture, erythroid cell populations were isolated by flow cytometry. Gene expression in the FL- and AB-derived cells was studied by Affymetrix microarray and reverse-transcription quantitative PCR. The microarray data were combined with that from a previous study of human FL and AB erythroid development, and meta-analysis was performed on the combined dataset. RESULTS: FL erythroid cells showed enhanced proliferation and elevated fetal hemoglobin relative to AB cells. A total of 1,391 fetal up-regulated and 329 adult up-regulated genes were identified from microarray data generated in this study. Five hundred ninety-nine fetal up-regulated and 284 adult up-regulated genes with reproducible patterns between this and a previous study were identified by meta-analysis of the combined dataset, which constitute a core set of genes differentially expressed between FL and AB erythroid cells. In addition to these core genes, 826 and 48 novel genes were identified only from data generated in this study to be FL up- and AB up-regulated, respectively. The in vivo relevance for some of these novel genes was demonstrated by pathway analysis, which showed novel genes functioning in pathways known to be important in proliferation and erythropoiesis, including the mitogen-activated protein kinase (MAPK) and the phosphatidyl inositol 3 kinase (PI3K)-Akt pathways. DISCUSSION: The genes with upregulated expression in FL cells, which include many novel genes identified from data generated in this study, suggest that cellular proliferation pathways are more active in the fetal stage. Erythroid progenitor cells may thus undergo a reprogramming during ontogenesis in which proliferation is modulated by changes in expression of key regulators, primarily MYC, and others including insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), neuropilin and tolloid-like 2 (NETO2), branched chain amino acid transaminase 1 (BCAT1), tenascin XB (TNXB) and proto-oncogene, AP-1 transcription factor subunit (JUND). This reprogramming may thus be necessary for acquisition of the adult identity and switching of hemoglobin expression.

11.
ACS Med Chem Lett ; 9(12): 1235-1240, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30613332

RESUMO

The S108N mutation of dihydrofolate reductase (DHFR) renders Plasmodium falciparum malaria parasites resistant to pyrimethamine through steric clash with the rigid side chain of the inhibitor. Inhibitors with flexible side chains can avoid this clash and retain effectiveness against the mutant. However, other mutations such as N108S reversion confer resistance to flexible inhibitors. We designed and synthesized hybrid inhibitors with two structural types in a single molecule, which are effective against both wild-type and multiple mutants of P. falciparum through their selective target binding, as demonstrated by X-ray crystallography. Furthermore, the hybrid inhibitors can forestall the emergence of new resistant mutants, as shown by selection of mutants resistant to hybrid compound BT1 from a diverse PfDHFR random mutant library expressed in a surrogate bacterial system. These results show that it is possible to develop effective antifolate antimalarials to which the range of parasite resistance mutations is greatly reduced.

12.
PeerJ ; 5: e3766, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018598

RESUMO

BACKGROUND: The current first line drugs for treating uncomplicated malaria are artemisinin (ART) combination therapies. However, Plasmodium falciparum parasites resistant to ART and partner drugs are spreading, which threatens malaria control efforts. Rodent malaria species are useful models for understanding antimalarial resistance, in particular genetic variants responsible for cross resistance to different compounds. METHODS: The Plasmodium berghei RC strain (PbRC) is described as resistant to different antimalarials, including chloroquine (CQ) and ART. In an attempt to identify the genetic basis for the antimalarial resistance trait in PbRC, its genome was sequenced and compared with five other previously sequenced P. berghei strains. RESULTS: We found that PbRC is eight-fold less sensitive to the ART derivative artesunate than the reference strain PbANKA. The genome of PbRC is markedly different from other strains, and 6,974 single nucleotide variants private to PbRC were identified. Among these PbRC private variants, non-synonymous changes were identified in genes known to modulate antimalarial sensitivity in rodent malaria species, including notably the ubiquitin carboxyl-terminal hydrolase 1 gene. However, no variants were found in some genes with strong evidence of association with ART resistance in P. falciparum such as K13 propeller protein. DISCUSSION: The variants identified in PbRC provide insight into P. berghei genome diversity and genetic factors that could modulate CQ and ART resistance in Plasmodium spp.

13.
PLoS One ; 12(5): e0178483, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542466

RESUMO

BACKGROUND: Biochemical methods are available for enriching 5' ends of RNAs in prokaryotes, which are employed in the differential RNA-seq (dRNA-seq) and the more recent Cappable-seq protocols. Computational methods are needed to locate RNA 5' ends from these data by statistical analysis of the enrichment. Although statistical-based analysis methods have been developed for dRNA-seq, they may not be suitable for Cappable-seq data. The more efficient enrichment method employed in Cappable-seq compared with dRNA-seq could affect data distribution and thus algorithm performance. RESULTS: We present Transformation of Nucleotide Enrichment Ratios (ToNER), a tool for statistical modeling of enrichment from RNA-seq data obtained from enriched and unenriched libraries. The tool calculates nucleotide enrichment scores and determines the global transformation for fitting to the normal distribution using the Box-Cox procedure. From the transformed distribution, sites of significant enrichment are identified. To increase power of detection, meta-analysis across experimental replicates is offered. We tested the tool on Cappable-seq and dRNA-seq data for identifying Escherichia coli transcript 5' ends and compared the results with those from the TSSAR tool, which is designed for analyzing dRNA-seq data. When combining results across Cappable-seq replicates, ToNER detects more known transcript 5' ends than TSSAR. In general, the transcript 5' ends detected by ToNER but not TSSAR occur in regions which cannot be locally modeled by TSSAR. CONCLUSION: ToNER uses a simple yet robust statistical modeling approach, which can be used for detecting RNA 5'ends from Cappable-seq data, in particular when combining information from experimental replicates. The ToNER tool could potentially be applied for analyzing other RNA-seq datasets in which enrichment for other structural features of RNA is employed. The program is freely available for download at ToNER webpage (http://www4a.biotec.or.th/GI/tools/toner) and GitHub repository (https://github.com/PavitaKae/ToNER).


Assuntos
Nucleotídeos/genética , RNA/genética , Algoritmos , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos
14.
Int J Parasitol ; 47(7): 385-398, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28153780

RESUMO

An understanding of the biology of Plasmodium parasites, which are the causative agents of the disease malaria, requires study of gene function. Various reverse genetic tools have been described for determining gene function. These tools can be broadly grouped as trans- and cis-acting. Trans-acting tools control gene functions through synthetic nucleic acid probe molecules matching the sequence of the gene of interest. Once delivered to the parasite, the probe engages with the mRNA of the target gene and attenuates its function. Cis-acting tools control gene function through elements introduced into the gene of interest by DNA transfection. The expression of the modified gene can be controlled using external agents, typically small molecule ligands. In this review, we discuss the strengths and weaknesses of these tools to guide researchers in selecting the appropriate tool for studies of gene function, and for guiding future refinements of these tools.


Assuntos
Regulação da Expressão Gênica , Engenharia Genética/métodos , Plasmodium/metabolismo , Animais , Plasmodium/genética
15.
Eur J Hum Genet ; 25(4): 499-508, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28098149

RESUMO

The Asian Diversity Project (ADP) assembled 37 cosmopolitan and ethnic minority populations in Asia that have been densely genotyped across over half a million markers to study patterns of genetic diversity and positive natural selection. We performed population structure analyses of the ADP populations and divided these populations into four major groups based on their genographic information. By applying a highly sensitive algorithm haploPS to locate genomic signatures of positive selection, 140 distinct genomic regions exhibiting evidence of positive selection in at least one population were identified. We examined the extent of signal sharing for regions that were selected in multiple populations and observed that populations clustered in a similar fashion to that of how the ancestry clades were phylogenetically defined. In particular, populations predominantly located in South Asia underwent considerably different adaptation as compared with populations from the other geographical regions. Signatures of positive selection present in multiple geographical regions were predicted to be older and have emerged prior to the separation of the populations in the different regions. In contrast, selection signals present in a single population group tended to be of lower frequencies and thus can be attributed to recent evolutionary events.


Assuntos
Povo Asiático/genética , Variação Genética , População/genética , Seleção Genética , Ásia , Evolução Molecular , Genótipo , Humanos
16.
Mol Biochem Parasitol ; 210(1-2): 32-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27520480

RESUMO

Malaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes. Plasmodium spp. possess two cytochrome heme lyases encoded by separate genes. Given the redundancy of heme synthesis, we sought to determine if heme lyase function also exhibits redundancy. To answer this question, we performed gene knockout experiments. We found that the PBANKA_143950 and PBANKA_0602600 Plasmodium berghei genes encoding cytochrome c (Pbcchl) and cytochrome c1 (Pbcc1hl) heme lyases, respectively, can only be disrupted when a complementary gene is present. In contrast, four genes in the de novo heme synthesis pathway can be disrupted without complementation. This work provides evidence that Pbcchl and Pbcc1hl are both essential and thus may be antimalarial targets.


Assuntos
Citocromos c1/metabolismo , Citocromos c/metabolismo , Heme/metabolismo , Plasmodium berghei/fisiologia , Citocromos c/genética , Citocromos c1/genética , Expressão Gênica , Regulação da Expressão Gênica , Marcação de Genes , Genes Essenciais , Vetores Genéticos/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo
17.
Int J Parasitol ; 46(8): 527-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27150044

RESUMO

The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites.


Assuntos
Antimaláricos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/efeitos dos fármacos , Timidilato Sintase/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Feminino , Expressão Gênica , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Plasmídeos , Plasmodium berghei/enzimologia , Plasmodium berghei/genética , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , RNA Catalítico/efeitos dos fármacos , Organismos Livres de Patógenos Específicos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/antagonistas & inibidores , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Transfecção
18.
Int J Parasitol ; 46(1): 7-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26548960

RESUMO

Accurate gene models are essential for understanding parasite biology. However, transcript structure information is lacking for most parasite genes. Here, we describe "Virtual Northern" analysis of the malaria parasite Plasmodium falciparum to address this issue. RNA-seq libraries were made from size-fractionated RNA. Transcript sizes for 3052 genes were inferred from the read counts in each library. The data show that for almost half of the transcripts, the combined untranslated regions are more than twice the length of the open reading frame. Furthermore, we identified novel polycistronic, or gene overlapping, transcripts that suggest revisions to current gene models are needed.


Assuntos
Plasmodium falciparum/genética , RNA Mensageiro/genética , Sequência de Bases , Northern Blotting/métodos , Biblioteca Gênica , Homologia de Genes , Técnicas Genéticas , Humanos , Malária Falciparum/parasitologia , Fases de Leitura Aberta , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , Análise de Sequência de RNA/métodos , Transcrição Gênica
19.
BMC Bioinformatics ; 17(Suppl 19): 516, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28155648

RESUMO

BACKGROUND: Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. METHODS: The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. RESULTS: We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. CONCLUSIONS: This work presents a modification of the extended depth of field approach for efficiently enhancing microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall processing time while maintaining the clarity of important image features. The empirical results from parasite-infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers of microscope images, e.g., as required for medical diagnosis.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Malária Falciparum/diagnóstico , Microscopia/métodos , Modelos Biológicos , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/isolamento & purificação
20.
BMC Genomics ; 16 Suppl 12: S15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26681167

RESUMO

BACKGROUND: DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. RESULTS: We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. CONCLUSIONS: This work presents an automated genotyping tool from DNA gel electrophoresis images, called GELect, which was written in Java and made available through the imageJ framework. With a novel automated image processing workflow, the tool can accurately segment lanes from a gel matrix, intelligently extract distorted and even doublet bands that are difficult to identify by existing image processing tools. Consequently, genotyping from DNA gel electrophoresis can be performed automatically allowing users to efficiently conduct large scale DNA fingerprinting via DNA gel electrophoresis. The software is freely available from http://www.biotec.or.th/gi/tools/gelect.


Assuntos
Impressões Digitais de DNA/métodos , DNA de Plantas/análise , Saccharum/genética , Automação Laboratorial , Eletroforese em Gel de Poliacrilamida/métodos , Genótipo , Processamento de Imagem Assistida por Computador/métodos , Polimorfismo Genético , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...