Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-37539551

RESUMO

As in most plants, during their growth from immature to mature stages, the leaves of Setaria viridis, a model C4 bioenergy plant, have differential growth rates from the base (immature or growing) to the tip (most mature). In this study, we constructed a multi-segment C4 leaf metabolic model of S. viridis with two cell types (bundle sheath and mesophyll cells) across four leaf segments (base to tip). We incorporated differential growth rates for each leaf segment as constraints and integrated transcriptomic data as the objective function for our model simulation using flux balance analysis. The model was able to predict the exchanges of metabolites between immature and mature segments of the leaf and the distribution of the activities of biomass synthesis across those segments. Our model demonstrated the use of a modelling approach in studying the source-sink relationship within an organ and provided insights into the metabolic interactions across different parts of a leaf.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Células do Mesofilo/metabolismo , Fotossíntese/genética , Biomassa
2.
PLoS One ; 17(5): e0259480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35580120

RESUMO

Mycobacteriophages are phages that infect mycobacteria resulting in their killing. Although lysis is the primary mechanism by which mycobacteriophages cause cell death, others such as abortive infection may also be involved. We took recourse to perform immunofluorescence and electron microscopic studies using mycobacteriophage D29 infected Mycobacterium smegmatis cells to investigate this issue. We could observe the intricate details of the infection process using these techniques such as adsorption, the phage tail penetrating the thick mycolic acid layer, formation of membrane pores, membrane blebbing, and phage release. We observed a significant increase in DNA fragmentation and membrane depolarization using cell-biological techniques symptomatic of programmed cell death (PCD). As Toxin-Antitoxin (TA) systems mediate bacterial PCD, we measured their expression profiles with and without phage infection. Of the three TAs examined, MazEF, VapBC, and phd/doc, we found that in the case of VapBC, a significant decrease in the antitoxin (VapB): toxin (VapC) ratio was observed following phage infection, implying that high VapC may have a role to play in the induction of mycobacterial apoptotic cell death following phage infection. This study indicates that D29 infection causes mycobacteria to undergo morphological and molecular changes that are hallmarks of apoptotic cell death.


Assuntos
Antitoxinas , Micobacteriófagos , Infecções por Mycobacterium , Mycobacterium , Siphoviridae , Apoptose , Humanos , Micobacteriófagos/genética , Mycobacterium smegmatis
3.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35353035

RESUMO

Mycobacteriophage D29 infects species belonging to the genus Mycobacterium including the deadly pathogen Mycobacterium tuberculosis. D29 is a lytic phage, although, related to the lysogenic mycobacteriophage L5. This phage is unable to lysogenize in mycobacteria as it lacks the gene encoding the phage repressor. Infection by many mycobacteriophages cause various changes in the host that ultimately leads to inactivation of the latter. One of the host targets often modified in the process is RNA polymerase. During our investigations with phage D29 infected Mycobacterium smegmatis (Msm) we observed that the promoters from both phage, and to a lesser extent those of the host were found to be more active in cells that were exposed to D29, as compared to the unexposed. Further experiments indicate that the RNA polymerase purified from phage infected cells possessed higher affinity for promoters particularly those that were phage derived. Comparison of the purified RNA polymerase preparations from infected and uninfected cells showed that several ancillary transcription factors, Sigma factor F, Sigma factor H, CarD and RbpA are prominently associated with the RNA polymerase from infected cells. Based on our observations we conclude that the higher activity of RNA polymerase observed in D29 infected cells is due to its increased association with ancillary transcription factors.


Assuntos
Micobacteriófagos , Mycobacterium tuberculosis , RNA Polimerases Dirigidas por DNA/genética , Lisogenia , Micobacteriófagos/genética , Mycobacterium smegmatis/genética
4.
Microbiology (Reading) ; 168(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748635

RESUMO

A unique feature found in the genomes of mycobacteriophages such as L5 belonging to the A cluster is the presence of multiple dispersed repeated elements known as stoperators. The phage repressor binds these repeat elements, shutting off transcription globally and thereby promoting lysogeny. Interestingly, the sequence of these stoperators closely matches that of the consensus -35 region of prokaryotic promoters, leading us to propose that they may have a role to play in the initiation of transcription by serving as RNA polymerase binding sites. Mycobacteriophage D29 is closely related to phage L5, and their genome organizations are very similar. As in L5, there are multiple stoperators in the genome of D29. The positions occupied by the stoperators in the two genomes are almost identical. The significant difference between the two phages is that D29 lacks the gene encoding the equivalent of the L5 repressor. Since phage D29 does not produce a repressor, we considered it to be a suitable model for testing our hypothesis that the stoperators function as promoters in the absence of the repressor. To prove our point, we targeted CRISPR guide RNAs against six stoperators. In the case of five out of the six, we found a significant reduction in downstream gene expression and phage growth. Based on this observation and primer extension assays, we conclude that promoting gene expression is likely to be the primary function of stoperators.


Assuntos
Micobacteriófagos , Micobacteriófagos/genética , Regiões Promotoras Genéticas , Lisogenia , Expressão Gênica
5.
Mol Plant ; 14(1): 115-126, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33152518

RESUMO

The rapid and enthusiastic adoption of single-cell RNA sequencing (scRNA-seq) has demonstrated that this technology is far more than just another way to perform transcriptome analysis. It is not an exaggeration to say that the advent of scRNA-seq is revolutionizing the details of whole-transcriptome snapshots from a tissue to a cell. With this disruptive technology, it is now possible to mine heterogeneity between tissue types and within cells like never before. This enables more rapid identification of rare and novel cell types, simultaneous characterization of multiple different cell types and states, more accurate and integrated understanding of their roles in life processes, and more. However, we are only at the beginning of unlocking the full potential of scRNA-seq applications. This is particularly true for plant sciences, where single-cell transcriptome profiling is in its early stage and has many exciting challenges to overcome. In this review, we compare and evaluate recent pioneering studies using the Arabidopsis root model, which has established new paradigms for scRNA-seq studies in plants. We also explore several new and promising single-cell analysis tools that are available to those wishing to study plant development and physiology at unprecedented resolution and scale. In addition, we propose some future directions on the use of scRNA-seq technology to tackle some of the critical challenges in plant research and breeding.


Assuntos
Perfilação da Expressão Gênica , Plantas/genética , Análise de Célula Única , Tamanho Celular , Genômica , Protoplastos/metabolismo
6.
FEMS Microbiol Lett ; 367(21)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33119086

RESUMO

Mycobacteriophages are phages that infect and kill Mycobacteria, several of which, Mycobacterium tuberculosis (Mtb), for example, cause the disease tuberculosis. Although genomes of many such phages have been sequenced, we have very little insight into how they express their genes in a controlled manner. To address this issue, we have raised a temperature-sensitive (ts) mutant of phage D29 that can grow at 37°C but not at 42°C and used it to perform differential gene expression and proteome analysis studies. Our analysis results indicate that expression of genes located in the right arm, considered to be early expressed, was lowered as the temperature was shifted from 37°C to 42°C. In contrast, expression of those on the left, the late genes were only marginally affected. Thus, we conclude that transcription of genes from the two arms takes place independently of each other and that a specific factor must be controlling the expression of the right arm genes. We also observe that within the right arm itself; there exists a mechanism to ensure high-level synthesis of Gp48, a thymidylate synthase X. Enhanced presence of this protein in infected cells results in delayed lysis and higher phage yields.


Assuntos
Regulação Viral da Expressão Gênica , Genes Virais/genética , Micobacteriófagos/genética , Mutação , Micobacteriófagos/metabolismo , Temperatura
7.
PLoS One ; 15(2): e0228657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32017790

RESUMO

Plumbagin derived from the plant Plumbago indica, known as Chitrak in India, is an example of a medicinal compound used traditionally to cure a variety of ailments. Previous reports have indicated that it can inhibit the growth of Mycobacterium tuberculosis (Mtb), the causative agent of the deadly disease TB. In this investigation, we provide an insight into its mode of action. We show here that a significant mycobacterial target that is inhibited by plumbagin is the enzyme ThyX, a form of thymidylate synthase, that is responsible for the synthesis of dTMP from dUMP in various bacterial pathogens, including Mtb. Using a purified preparation of the recombinant version of Mtb ThyX, we demonstrate that plumbagin, a 2,4 napthoquinone, but not lawsone, a structurally related medicinal compound, inhibits its activity in vitro. We also show that the intracellular [dTTP]/[dATP] ratio in Mycobacterium smegmatis (Msm) cells decrease upon treatment with plumbagin, and this, in turn, leads to cell death. Such a conclusion is supported by the observation that over-expression of thyx in the plumbagin treated Msm cells leads to the restoration of viability. The results of our investigation indicate that plumbagin kills mycobacterial cells primarily by targeting ThyX, a vital enzyme required for their survival.


Assuntos
Mycobacterium tuberculosis/enzimologia , Naftoquinonas/farmacologia , Timidilato Sintase/antagonistas & inibidores , Antituberculosos , Produtos Biológicos , Sobrevivência Celular/efeitos dos fármacos , Nucleotídeos de Desoxiadenina/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Naftoquinonas/uso terapêutico , Nucleotídeos de Timina/metabolismo
8.
Microbiology (Reading) ; 166(4): 386-397, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31999239

RESUMO

Chemolithotrophic sulfur oxidation represents a significant part of the biogeochemical cycling of this element. Due to its long evolutionary history, this ancient metabolism is well known for its extensive mechanistic and phylogenetic diversification across a diverse taxonomic spectrum. Here we carried out whole-genome sequencing and analysis of a new betaproteobacterial isolate, Pusillimonas ginsengisoli SBSA, which is found to oxidize thiosulfate via the formation of tetrathionate as an intermediate. The 4.7 Mb SBSA genome was found to encompass a soxCDYZAXOB operon, plus single thiosulfate dehydrogenase (tsdA) and sulfite : acceptor oxidoreductase (sorAB) genes. Recombination-based knockout of tsdA revealed that the entire thiosulfate is first converted to tetrathionate by the activity of thiosulfate dehydrogenase (TsdA) and the Sox pathway is not functional in this bacterium despite the presence of all necessary sox genes. The ∆soxYZ and ∆soxXA knockout mutants exhibited a wild-type-like phenotype for thiosulfate/tetrathionate oxidation, whereas ∆soxB, ∆soxCD and soxO::KanR mutants only oxidized thiosulfate up to tetrathionate intermediate and had complete impairment in tetrathionate oxidation. The substrate-dependent O2 consumption rate of whole cells and the sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol inhibitors/glutathione, indicated that glutathione plays a key role in SBSA tetrathionate oxidation. The present findings collectively indicate that the potential glutathione : tetrathionate coupling in P. ginsengisoli involves a novel enzymatic component, which is different from the dual-functional thiol dehydrotransferase (ThdT), while subsequent oxidation of the sulfur intermediates produced (e.g. glutathione : sulfodisulfane molecules) may proceed via the iterative action of soxBCD .


Assuntos
Alcaligenaceae/metabolismo , Crescimento Quimioautotrófico/genética , Enxofre/metabolismo , Alcaligenaceae/genética , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Glutationa/metabolismo , Mutação , Oxirredução , Oxirredutases/genética , Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Sulfitos/metabolismo , Ácido Tetratiônico/metabolismo , Tiossulfatos/metabolismo
9.
Cell Mol Life Sci ; 77(3): 489-495, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31748916

RESUMO

Genome-scale metabolic models have been successfully applied to study the metabolism of multiple plant species in the past decade. While most existing genome-scale modelling studies have focussed on studying the metabolic behaviour of individual plant metabolic systems, there is an increasing focus on combining models of multiple tissues or organs to produce multi-tissue models that allow the investigation of metabolic interactions between tissues and organs. Multi-tissue metabolic models were constructed for multiple plants including Arabidopsis, barley, soybean and Setaria. These models were applied to study various aspects of plant physiology including the division of labour between organs, source and sink tissue relationship, growth of different tissues and organs and charge and proton balancing. In this review, we outline the process of constructing multi-tissue genome-scale metabolic models, discuss the strengths and challenges in using multi-tissue models, review the current status of plant multi-tissue and whole plant metabolic models and explore the approaches for integrating genome-scale metabolic models into multi-scale plant models.


Assuntos
Redes e Vias Metabólicas/genética , Plantas/genética , Plantas/metabolismo , Genoma de Planta/genética , Humanos , Modelos Biológicos
10.
Plant Physiol ; 180(4): 1912-1929, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31171578

RESUMO

Until they become photoautotrophic juvenile plants, seedlings depend upon the reserves stored in seed tissues. These reserves must be mobilized and metabolized, and their breakdown products must be distributed to the different organs of the growing seedling. Here, we investigated the mobilization of soybean (Glycine max) seed reserves during seedling growth by initially constructing a genome-scale stoichiometric model for this important crop plant and then adapting the model to reflect metabolism in the cotyledons and hypocotyl/root axis (HRA). A detailed analysis of seedling growth and alterations in biomass composition was performed over 4 d of postgerminative growth and used to constrain the stoichiometric model. Flux balance analysis revealed marked differences in metabolism between the two organs, together with shifts in primary metabolism occurring during different periods postgermination. In particular, from 48 h onward, cotyledons were characterized by the oxidation of fatty acids to supply carbon for the tricarboxylic acid cycle as well as production of sucrose and glutamate for export to the HRA, while the HRA was characterized by the use of a range of imported amino acids in protein synthesis and catabolic processes. Overall, the use of flux balance modeling provided new insight into well-characterized metabolic processes in an important crop plant due to their analysis within the context of a metabolic network and reinforces the relevance of the application of this technique to the analysis of complex plant metabolic systems.


Assuntos
Glycine max/metabolismo , Plântula/metabolismo , Carbono/metabolismo , Cotilédone/genética , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Glutâmico/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Plântula/genética , Glycine max/genética , Sacarose/metabolismo
11.
BMC Bioinformatics ; 20(1): 357, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248364

RESUMO

BACKGROUND: C4 photosynthesis is a key domain of plant research with outcomes ranging from crop quality improvement, biofuel production and efficient use of water and nutrients. A metabolic network model of C4 "lab organism" Setaria viridis with extensive gene-reaction associations can accelerate target identification for desired metabolic manipulations and thereafter in vivo validation. Moreover, metabolic reconstructions have also been shown to be a significant tool to investigate fundamental metabolic traits. RESULTS: A mass and charge balance genome-scale metabolic model of Setaria viridis was constructed, which was tested to be able to produce all major biomass components in phototrophic and heterotrophic conditions. Our model predicted an important role of the utilization of NH[Formula: see text] and NO[Formula: see text] ratio in balancing charges in plants. A multi-tissue extension of the model representing C4 photosynthesis was able to utilize NADP-ME subtype of C4 carbon fixation for the production of lignocellulosic biomass in stem, providing a tool for identifying gene associations for cellulose, hemi-cellulose and lignin biosynthesis that could be potential target for improved lignocellulosic biomass production. Besides metabolic engineering, our modeling results uncovered a previously unrecognized role of the 3-PGA/triosephosphate shuttle in proton balancing. CONCLUSIONS: A mass and charge balance model of Setaria viridis, a model C4 plant, provides the possibility of system-level investigation to identify metabolic characteristics based on stoichiometric constraints. This study demonstrated the use of metabolic modeling in identifying genes associated with the synthesis of particular biomass components, and elucidating new role of previously known metabolic processes.


Assuntos
Prótons , Setaria (Planta)/metabolismo , Biomassa , Celulose/biossíntese , Genoma de Planta , Lignina/biossíntese , Redes e Vias Metabólicas , Modelos Biológicos , Fotossíntese , Polissacarídeos/biossíntese , Setaria (Planta)/genética
12.
Front Plant Sci ; 9: 884, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997643

RESUMO

Plant metabolism is highly adapted in response to its surrounding for acquiring limiting resources. In this study, a dynamic flux balance modeling framework with a multi-tissue (leaf and root) diel genome-scale metabolic model of Arabidopsis thaliana was developed and applied to investigate the reprogramming of plant metabolism through multiple growth stages under different nutrient availability. The framework allowed the modeling of optimal partitioning of resources and biomass in leaf and root over diel phases. A qualitative flux map of carbon and nitrogen metabolism was identified which was consistent across growth phases under both nitrogen rich and limiting conditions. Results from the model simulations suggested distinct metabolic roles in nitrogen metabolism played by enzymes with different cofactor specificities. Moreover, the dynamic model was used to predict the effect of physiological or environmental perturbation on the growth of Arabidopsis leaves and roots.

13.
Front Plant Sci ; 8: 2060, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250098

RESUMO

To combat decrease in rice productivity under different stresses, an understanding of rice metabolism is needed. Though there are different genome scale metabolic models (GSMs) of Oryza sativa japonica, no GSM with gene-protein-reaction association exist for Oryza sativa indica. Here, we report a GSM, OSI1136 of O.s. indica, which includes 3602 genes and 1136 metabolic reactions and transporters distributed across the cytosol, mitochondrion, peroxisome, and chloroplast compartments. Flux balance analysis of the model showed that for varying RuBisCO activity (Vc/Vo) (i) the activity of the chloroplastic malate valve increases to transport reducing equivalents out of the chloroplast under increased photorespiratory conditions and (ii) glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase can act as source of cytosolic ATP under decreased photorespiration. Under increasing light conditions we observed metabolic flexibility, involving photorespiration, chloroplastic triose phosphate and the dicarboxylate transporters of the chloroplast and mitochondrion for redox and ATP exchanges across the intracellular compartments. Simulations under different enzymatic cost conditions revealed (i) participation of peroxisomal glutathione-ascorbate cycle in photorespiratory H2O2 metabolism (ii) different modes of the chloroplastic triose phosphate transporters and malate valve, and (iii) two possible modes of chloroplastic Glu-Gln transporter which were related with the activity of chloroplastic and cytosolic isoforms of glutamine synthetase. Altogether, our results provide new insights into plant metabolism.

14.
J Biosci ; 40(4): 819-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26564982

RESUMO

Due to socio-economic reasons, it is essential to design efficient stress-tolerant, more nutritious, high yielding rice varieties. A systematic understanding of the rice cellular metabolism is essential for this purpose. Here, we analyse a genome-scale metabolic model of rice leaf using Flux Balance Analysis to investigate whether it has potential metabolic flexibility to increase the biosynthesis of any of the biomass components. We initially simulate the metabolic responses under an objective to maximize the biomass components. Using the estimated maximum value of biomass synthesis as a constraint, we further simulate the metabolic responses optimizing the cellular economy. Depending on the physiological conditions of a cell, the transport capacities of intracellular transporters (ICTs) can vary. To mimic this physiological state, we randomly vary the ICTs' transport capacities and investigate their effects. The results show that the rice leaf has the potential to increase glycine and starch in a wide range depending on the ICTs' transport capacities. The predicted biosynthesis pathways vary slightly at the two different optimization conditions. With the constraint of biomass composition, the cell also has the metabolic plasticity to fix a wide range of carbon-nitrogen ratio.


Assuntos
Algoritmos , Biomassa , Genoma de Planta , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Carbono/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Expressão Gênica , Glicina/biossíntese , Redes e Vias Metabólicas/genética , Modelos Biológicos , Nitrogênio/metabolismo , Oryza/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Amido/biossíntese
15.
PLoS One ; 10(7): e0133899, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222686

RESUMO

More than 20% of the total caloric intake of human population comes from rice. The expression of rice genes and hence, the concentration of enzymatic proteins might vary due to several biotic and abiotic stresses. It in turn, can influence the overall metabolism and survivability of rice plant. Thus, understanding the rice cellular metabolism, its plasticity and potential readjustments under different perturbations can help rice biotechnologists to design efficient rice cultivars. Here, using the flux balance analysis (FBA) method, with the help of in-silico reaction deletion strategy, we study the metabolic plasticity of genome-scale metabolic model of rice leaf. A set of 131 reactions, essential for the production of primary biomass precursors is identified; deletion of any of them can inhibit the overall biomass production. Usability Index (IU) for the rest of the reactions are estimated and based on this parameter, they are classified into three categories-maximally-favourable, quasi-favourable and unfavourable for the primary biomass production. The lower value of 1 - IU of a reaction suggests that the cell cannot easily bypass it for biomass production. While some of the alternative paths are energetically equally efficient, others demand for higher photon. The variations in (i) ATP/NADPH ratio, (ii) exchange of metabolites through chloroplastic transporters and (iii) total biomass production are also presented here. Mutual metabolic dependencies of different cellular compartments are also demonstrated.


Assuntos
Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Oryza/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Citosol/metabolismo , Citosol/efeitos da radiação , Genótipo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , NADP/metabolismo , Oryza/citologia , Oryza/genética , Oryza/efeitos da radiação , Fótons , Fotossíntese/efeitos da radiação
16.
Front Plant Sci ; 5: 656, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506349

RESUMO

Previously we have used a genome scale model of rice metabolism to describe how metabolism reconfigures at different light intensities in an expanding leaf of rice. Although this established that the metabolism of the leaf was adequately represented, in the model, the scenario was not that of the typical function of the leaf-to provide material for the rest of the plant. Here we extend our analysis to explore the transition to a source leaf as export of photosynthate increases at the expense of making leaf biomass precursors, again as a function of light intensity. In particular we investigate whether, when the leaf is making a smaller range of compounds for export to the phloem, the same changes occur in the interactions between mitochondrial and chloroplast metabolism as seen in biomass synthesis for growth when light intensity increases. Our results show that the same changes occur qualitatively, though there are slight quantitative differences reflecting differences in the energy and redox requirements for the different metabolic outputs.

17.
Plant Physiol ; 162(2): 1060-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23640755

RESUMO

We describe the construction and analysis of a genome-scale metabolic model representing a developing leaf cell of rice (Oryza sativa) primarily derived from the annotations in the RiceCyc database. We used flux balance analysis to determine that the model represents a network capable of producing biomass precursors (amino acids, nucleotides, lipid, starch, cellulose, and lignin) in experimentally reported proportions, using carbon dioxide as the sole carbon source. We then repeated the analysis over a range of photon flux values to examine responses in the solutions. The resulting flux distributions show that (1) redox shuttles between the chloroplast, cytosol, and mitochondrion may play a significant role at low light levels, (2) photorespiration can act to dissipate excess energy at high light levels, and (3) the role of mitochondrial metabolism is likely to vary considerably according to the balance between energy demand and availability. It is notable that these organelle interactions, consistent with many experimental observations, arise solely as a result of the need for mass and energy balancing without any explicit assumptions concerning kinetic or other regulatory mechanisms.


Assuntos
Modelos Biológicos , Oryza/genética , Oryza/metabolismo , Folhas de Planta/fisiologia , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Metabolismo Energético , Genoma de Planta , Luz , Mitocôndrias/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...