Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 203(6): E188-E199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781531

RESUMO

AbstractAn individual's access to mates (i.e., its "mating potential") can constrain its reproduction but may also influence its fitness through effects on offspring survival. For instance, mate proximity may correspond with relatedness and lead to inbreeding depression in offspring. While offspring production and survival might respond differently to mating potential, previous studies have not considered the simultaneous effects of mating potential on these fitness components. We investigated the relationship of mating potential with both production and survival of offspring in populations of a long-lived herbaceous perennial, Echinacea angustifolia. Across 7 years and 14 sites, we quantified the mating potential of maternal plants in 1,278 mating bouts and followed the offspring from these bouts over 8 years. We used aster models to evaluate the relationship of mating potential with the number of offspring that emerged and that were alive after 8 years. Seedling emergence increased with mating potential. Despite this, the number of offspring surviving after 8 years showed no relationship to mating potential. Our results support the broader conclusion that the effect of mating potential on fitness erodes over time because of demographic stochasticity at the maternal level.


Assuntos
Echinacea , Aptidão Genética , Reprodução , Echinacea/fisiologia , Plântula/fisiologia , Plântula/crescimento & desenvolvimento
2.
Am Nat ; 203(1): 14-27, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207135

RESUMO

AbstractFisher's fundamental theorem of natural selection (FTNS) can be used in a quantitative genetics framework to predict the rate of adaptation in populations. Here, we estimated the capacity for a wild population of the annual legume Chamaecrista fasciculata to adapt to future environments and compared predicted and realized rates of adaptation. We planted pedigreed seeds from one population into three prairie reconstructions along an east-to-west decreasing precipitation gradient. The FTNS predicted adaptation at all sites, but we found a response to selection that was smaller at the home and westernmost sites and maladaptive at the middle site because of changes in the selective environment between generations. However, mean fitness of the progeny generation at the home and westernmost sites exceeded population replacement, which suggests that the environment was sufficiently favorable to promote population persistence. More studies employing the FTNS are needed to clarify the degree to which predictions of the rate of adaptation are realized and its utility in the conservation of populations at risk of extinction from climate change.


Assuntos
Chamaecrista , Chamaecrista/fisiologia , Mudança Climática , Seleção Genética , Dinâmica Populacional , Sementes , Adaptação Fisiológica
3.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961599

RESUMO

Clark (2023) considers the similarity in socioeconomic status between relatives, drawing on records spanning four centuries in England. The paper adapts a classic quantitative genetics model in order to argue the fit of the model to the data suggests that: (1) variation in socioeconomic status is largely determined by additive genetic variation; (2) contemporary English people "remain correlated in outcomes with their lineage relatives in exactly the same way as in preindustrial England"; and (3) social mobility has remained static over this time period due to strong assortative mating on a "social genotype." These conclusions are based on a misconstrual of model parameters, which conflates genetic and non-genetic transmission (e.g. of wealth) within families. As we show, there is strong confounding of genetic and non-genetic sources of similarity in these data. Inconsistent with claims (2) and (3), we show that familial correlations in status are variable-generally decreasing-through the time period analyzed. Lastly, we find that statistical artifacts substantially bias estimates of familial correlations in the paper. Overall, Clark (2023) provides no information about the relative contribution of genetic and non-genetic factors to social status.

4.
Am J Bot ; 110(4): e16160, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943018

RESUMO

PREMISE: Fire induces flowering in many plant species worldwide, potentially improving reproductive fitness via greater availability of resources, as evident by flowering effort, and improved pollination outcomes, as evident by seed set. Postfire increases in flowering synchrony, and thus mating opportunities, may improve pollination. However, few studies evaluate fire effects on multiple components of fitness. Consequently, the magnitude and mechanism of fire effects on reproductive fitness remain unclear. METHODS: Over multiple years and prescribed burns in a prairie preserve, we counted flowering stems, flowers, fruits, and seeds of three prairie perennials, Echinacea angustifolia, Liatris aspera, and Solidago speciosa. We used aster life-history models to assess how fire and mating opportunities influenced annual maternal fitness and its components in individual plants. RESULTS: In Echinacea and Liatris, but not in Solidago, fire increased head counts, and both fire and mating opportunities increased maternal fitness. Burned Echinacea and Liatris plants with many flower heads produced many seeds despite low seed set (fertilization rates). In contrast, plants with an average number of flower heads had high seed set and produced many seeds only when mating opportunities were abundant. CONCLUSIONS: Fire increased annual reproductive fitness via resource- and pollination-dependent mechanisms in Echinacea and Liatris but did not affect Solidago fitness. The consistent relationship between synchrony and seed set implies that temporal mating opportunities play an important role in pollination. While fire promotes flowering in many plant species, our results reveal that even closely related species exhibit differential responses to fire, which could impact the broader plant community.


Assuntos
Aptidão Genética , Polinização , Polinização/fisiologia , Plantas , Reprodução , Sementes/fisiologia , Flores/fisiologia
6.
Am J Bot ; 109(11): 1861-1874, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112607

RESUMO

PREMISE: Reproductive fitness of individual plants depends on the timing of flowering, especially in mate-limited populations, such as those in fragmented habitats. When flowering time traits are associated with differential reproductive success, the narrow-sense heritability (h2 ) of traits will determine how rapidly trait means evolve in response to selection. Heritability of flowering time is documented in many annual plants. However, estimating h2 of flowering time in perennials presents additional methodological challenges, often including paternity assignment and trait expression over multiple years. METHODS: We evaluated the h2 of onset and duration of flowering using offspring-midparent regressions and restricted maximum likelihood methods in an experimental population of an iterocarpic, perennial, herbaceous plant, Echinacea angustifolia, growing in natural conditions. We assessed the flowering time of the parental cohort in 2005 and 2006; the offspring in 2014 through 2017. We also examined the effects of the paternity assignment from Cervus and MasterBayes on estimates of h2 . RESULTS: We found substantial h2 for onset and duration of flowering. We also observed variation in estimates among years. The most reliable estimates for both traits fell in the range of 0.1-0.17. We found evidence of a genotype by year interaction for onset of flowering and strong evidence that genotypes are consistent in their duration of flowering across years. CONCLUSIONS: Substantial heritabilities in this population imply the capacity for a response to natural selection, while also suggesting the potential for differential contributions to adaptive evolution among seasons.


Assuntos
Flores , Reprodução , Flores/genética , Reprodução/genética , Fenótipo , Variação Genética , Plantas
8.
Am Nat ; 199(2): 252-265, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35077273

RESUMO

AbstractThe ecological and evolutionary consequences of microbiome treatments aimed at protecting plants and animals against infectious disease are not well understood, even as such biological control measures become more common in agriculture and medicine. Notably, we lack information on the impacts of symbionts on pathogen fitness with which to project the consequences of competition for the evolution of virulence. To address this gap, we estimated fitness consequences for a common plant pathogen, Ustilago maydis, over differing virulence levels and when the host plant (Zea mays) is coinfected with a defensive symbiont (Fusarium verticillioides) and compared these fitness estimates to those obtained when the symbiont is absent. Here, virulence is measured as the reduction in the growth of the host caused by pathogen infection. Results of aster statistical models demonstrate that the defensive symbiont most negatively affects pathogen infection and that these effects propagate through subsequent stages of disease development to cause lower pathogen fitness across all virulence levels. Moreover, the virulence level at which pathogen fitness is maximal is higher in the presence of the defensive symbiont than in its absence. Thus, as expected from theory for multiple parasites, competition from the defensive symbiont may cause selection for increased pathogen virulence. More broadly, we consider that the evolutionary impacts of interactions between pathogens and microbial symbionts will depend critically on biological context and environment and that interactions among diverse microbial symbionts in spatially heterogeneous communities contribute to the maintenance of the highly diverse symbiotic functions observed in these communities.


Assuntos
Microbiota , Parasitos , Animais , Plantas , Simbiose , Virulência
9.
J Psychol ; 156(1): 33-47, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34762553

RESUMO

Mindful eating behavior and self-compassion have been individually shown to contribute to healthy eating. Evidence suggests that they may interact and that interaction may increase our understanding of eating behavior. The aim of the current study was to explore the relationship between mindful eating behavior, self-compassion, healthy/unhealthy weight, eating disorder and wellbeing in a sample of university students. An online survey using questionnaire data collection in a sample of 349 students (105 males and 244 females). Variables measured included body mass index (BMI), mindful eating behavior, eating attitudes, self-compassion and mental wellbeing. Regression and path analysis show mindful eating behavior and self-compassion to individually and interaction predict eating attitudes and wellbeing. BMI was shown to have a curvilinear relationship with mindful eating behavior, self-compassion and wellbeing with both the underweight and obese reporting lower self-compassion, less Mindful eating behavior, lower wellbeing and more likely to exhibit disordered eating. These results indicate that self-compassion and mindful eating behavior might be usefully targeted in interventions to prevent both obesity and eating disorder.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Atenção Plena , Adulto , Atitude , Empatia , Comportamento Alimentar , Feminino , Humanos , Masculino , Autocompaixão
10.
Am Nat ; 197(4): 434-447, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33755534

RESUMO

AbstractAn individual's lifetime fitness and patterns of mating between individuals are interdependent features of sexual organisms. Mating systems (outcrossing vs. selfing or mating between close relatives) can affect the distribution of offspring fitness, which generally declines with inbreeding, which in turn is related to a population's genetically effective size (Ne). Fitness and mating patterns are also expected to vary with proximity of mates (i.e., population density). Consequently, density and Ne may influence demographic and genetic changes over generations and interact in their effects. Here, we report an experiment designed to assess the influence of these two population-level properties on mating system and lifetime fitness. In experimental arrays under quasi-natural conditions, we varied the density and Ne of the hermaphroditic annual legume Chamaecrista fasciculata. We recorded components of fitness for each individual and employed microsatellite markers to estimate outcrossing and assign paternity. We used aster analyses to estimate lifetime fitness for genetic families using female (seeds set) and male (seeds sired) reproduction as fitness measures. With estimates from these analyses, we assessed the evidence for a trade-off between fitness attained through female versus male function, but we found none. Lifetime fitness increased with density, especially under high Ne. Outcrossing rates increased with density under high Ne but declined modestly with density under low Ne. Our results show that density and Ne have strong direct effects on fitness and mating systems, with negative fitness effects of low Ne limiting the positive effects of increasing density. These findings highlight the importance of the interactive effects of density and Ne on lifetime fitness.


Assuntos
Chamaecrista/fisiologia , Aptidão Genética , Biomassa , Reprodução
11.
Evolution ; 75(1): 73-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33215695

RESUMO

Adaptation through natural selection may be the only means by which small and fragmented plant populations will persist through present day environmental change. A population's additive genetic variance for fitness (VA (W)) represents its immediate capacity to adapt to the environment in which it exists. We evaluated this property for a population of the annual legume Chamaecrista fasciculata through a quantitative genetic experiment in the tallgrass prairie region of the Midwestern United States, where changing climate is predicted to include more variability in rainfall. To reduce incident rainfall, relative to controls receiving ambient rain, we deployed rain exclusion shelters. We found significant VA (W) in both treatments. We also detected a significant genotype-by-treatment interaction for fitness, which suggests that the genetic basis of the response to natural selection will differ depending on precipitation. For the trait-specific leaf area, we detected maladaptive phenotypic plasticity and an interaction between genotype and environment. Selection for thicker leaves was detected with increased precipitation. These results indicate capacity of this population of C. fasciculata to adapt in situ to environmental change.


Assuntos
Adaptação Biológica/genética , Chamaecrista/genética , Aptidão Genética , Variação Genética , Chuva , Mudança Climática , Seleção Genética
12.
J Hazard Mater ; 410: 124553, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33223312

RESUMO

Knowledge of the behavior of technologically enhanced naturally occurring radioactive materials derived through the decay of U and its daughter products, and their subsequent fractionation, mobilization and retention, is essential to develop effective mitigation strategies and long-term radiological risk prediction. In the present study, multiple state-of-the-art, spatially resolved micro-analytical characterization techniques were combined to systematically track the liberation and migration of radionuclides (RN) from U-bearing phases in an Olympic Dam Cu flotation concentrate following sulfuric-acid-leach processing. The results highlighted the progressive dissolution of U-bearing minerals (mainly uraninite) leading to the release, disequilibrium and ultimately upgrade of daughter RN from the parent U. This occurred in conjunction with primary Cu-Fe-sulfide minerals undergoing coupled-dissolution reprecipitation to the porous secondary Cu-mineral, covellite. The budget of RN remaining in the leached concentrate was split between RN still hosted in the original U-bearing minerals, and RN that were mobilized and subsequently sorbed/precipitated onto porous covellite and auxiliary gangue mineral phases (e.g. barite). Further grinding of the flotation concentrate prior to sulfuric-acid-leach led to dissolution of U-bearing minerals previously encapsulated within Cu-Fe-sulfide minerals, resulting in increased release and disequilibrium of daughter RN, and causing further RN upgrade. The various processes that affect RN (mobility, sorption, precipitation) and sulfide minerals (coupled-dissolution reprecipitation and associated porosity generation) occur continuously within the hydrometallurgical circuit, and their interplay controls the rapid and highly localized enrichment of RN. The innovative combination of tools developed here reveal the heterogeneous distribution and fractionation of the RN in the ores following hydrometallurgical treatment at nm to cm-scales in exquisite detail. This approach provides an effective blueprint for understanding of the mobility and retention of U and its daughter products in complex anthropogenic and natural processes in the mining and energy industries.

14.
Evolution ; 73(9): 1746-1758, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31432512

RESUMO

The immediate capacity for adaptation under current environmental conditions is directly proportional to the additive genetic variance for fitness, VA (W). Mean absolute fitness, W¯ , is predicted to change at the rate VA(W)W¯ , according to Fisher's Fundamental Theorem of Natural Selection. Despite ample research evaluating degree of local adaptation, direct assessment of VA (W) and the capacity for ongoing adaptation is exceedingly rare. We estimated VA (W) and W¯ in three pedigreed populations of annual Chamaecrista fasciculata, over three years in the wild. Contrasting with common expectations, we found significant VA (W) in all populations and years, predicting increased mean fitness in subsequent generations (0.83 to 6.12 seeds per individual). Further, we detected two cases predicting "evolutionary rescue," where selection on standing VA (W) was expected to increase fitness of declining populations ( W¯ < 1.0) to levels consistent with population sustainability and growth. Within populations, inter-annual differences in genetic expression of fitness were striking. Significant genotype-by-year interactions reflected modest correlations between breeding values across years, indicating temporally variable selection at the genotypic level that could contribute to maintaining VA (W). By directly estimating VA (W) and total lifetime W¯ , our study presents an experimental approach for studies of adaptive capacity in the wild.


Assuntos
Adaptação Fisiológica/genética , Chamaecrista/genética , Aptidão Genética , Variação Genética , Evolução Biológica , Genética Populacional , Genótipo , Geografia , Modelos Genéticos , Linhagem , Estações do Ano , Sementes , Seleção Genética , Fatores de Tempo
15.
Evol Appl ; 12(2): 159-174, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30697331

RESUMO

Drought-related selection during seedling emergence and early development may play a strong role in adaptation. Yet this process is poorly understood and particularly so in relation to ongoing climate change. To evaluate drought-induced differences in selection during early life stages, a total of 50 maternal families sampled from three climatically disparate ponderosa pine (Pinus ponderosa Doug.) populations were grown from seed in two common garden field experiments at a location that was warmer and drier than seed origins. Three drought treatments were imposed experimentally. Phenotypic selection was assessed by relating plant fitness measured as survival or unconditional expected height at age 3 to seed density (mass per unit volume), date of emergence, and timing of shoot elongation. In the year of emergence from seed, differential mortality was particularly strong and clearly indicated selection. In contrast, selection in subsequent years was far less pronounced. Phenotypes with high seed density, an intermediate but relatively early emergence date, and high 2nd-year early-season shoot elongation exhibited the greatest estimated fitness under drought. The form of selection varied among seed sources in relation to drought treatment. Selection was generally more acute in the cases of greatest difference between drought treatment and climatic patterns of precipitation at the site of seed origin. These results suggest that populations of ponderosa pine are differentially adapted to drought patterns associated with the climate of their origin. To the extent that the phenotypic traits examined are heritable or correlated with heritable traits, our results provide insight into how tree populations may evolve in response to drought.

16.
Am Nat ; 193(1): 1-10, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624100

RESUMO

The complex interplay of the multiple genetic processes of evolution and the ecological contexts in which they proceed frustrates detailed identification of many of the states of populations, both past and future, that may be of interest. Prediction of rates of adaptation, in the sense of change in mean fitness, into the future would, however, valuably inform expectations for persistence of populations, especially in our era of rapid environmental change. Heavy investment in genomics and other molecular tools has fueled belief that those approaches can effectively predict adaptation into the future. I contest this view. Genome scans display the genomic footprints of the effects of natural selection and the other evolutionary processes over past generations, but it remains problematic to predict future change in mean fitness via genomic approaches. Here, I advocate for a direct approach to prediction of rates of ongoing adaptation. Following an overview of relevant quantitative genetic approaches, I outline the promise of the fundamental theorem of natural selection for the study of the adaptive process. Empirical implementation of this concept can productively guide efforts both to deepen scientific insight into the process of adaptation and to inform measures for conserving the biota in the face of rapid environmental change.


Assuntos
Adaptação Biológica , Evolução Biológica , Seleção Genética , Mudança Climática , Previsões , Aptidão Genética , Genômica
17.
Genetics ; 211(2): 703-714, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30514707

RESUMO

Mutations are the ultimate source of all genetic variation. However, few direct estimates of the contribution of mutation to molecular genetic variation are available. To address this issue, we first analyzed the rate and spectrum of mutations in the Arabidopsis thaliana reference accession after 25 generations of single-seed descent. We then compared the mutation profile in these mutation accumulation (MA) lines against genetic variation observed in the 1001 Genomes Project. The estimated haploid single nucleotide mutation (SNM) rate for A. thaliana is 6.95 × 10-9 (SE ± 2.68 × 10-10) per site per generation, with SNMs having higher frequency in transposable elements (TEs) and centromeric regions. The estimated indel mutation rate is 1.30 × 10-9 (±1.07 × 10-10) per site per generation, with deletions being more frequent and larger than insertions. Among the 1694 unique SNMs identified in the MA lines, the positions of 389 SNMs (23%) coincide with biallelic SNPs from the 1001 Genomes population, and in 289 (17%) cases the changes are identical. Of the 329 unique indels identified in the MA lines, 96 (29%) overlap with indels from the 1001 Genomes dataset, and 16 indels (5% of the total) are identical. These overlap frequencies are significantly higher than expected, suggesting that de novo mutations are not uniformly distributed and arise at polymorphic sites more frequently than assumed. These results suggest that high mutation rate potentially contributes to high polymorphism and low mutation rate to reduced polymorphism in natural populations providing insights of mutational inputs in generating natural genetic diversity.


Assuntos
Arabidopsis/genética , Taxa de Mutação , Elementos de DNA Transponíveis , Acúmulo de Mutações , Polimorfismo de Nucleotídeo Único
18.
Evolution ; 72(11): 2537-2545, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30267420

RESUMO

Despite the importance of adaptation in shaping biological diversity over many generations, little is known about populations' capacities to adapt at any particular time. Theory predicts that a population's rate of ongoing adaptation is the ratio of its additive genetic variance for fitness, VA(W) , to its mean absolute fitness, W¯ . We conducted a transplant study to quantify W¯ and standing VA(W) for a population of the annual legume Chamaecrista fasciculata in one field site from which we initially sampled it and another site where it does not currently occur naturally. We also examined genotype-by-environment interactions, G × E, as well as its components, differences between sites in VA(W) and in rank of breeding values for fitness. The mean fitness indicated population persistence in both sites, and there was substantial VA(W) for ongoing adaptation at both sites. Statistically significant G × E indicated that the adaptive process would differ between sites. We found a positive correlation between fitness of genotypes in the "home" and "away" environments, and G × E was more pronounced as the life-cycle proceeds. This study exemplifies an approach to assessing whether there is sufficient VA(W) to support evolutionary rescue in populations that are declining.


Assuntos
Adaptação Fisiológica/genética , Chamaecrista/genética , Chamaecrista/crescimento & desenvolvimento , Meio Ambiente , Aptidão Genética , Genótipo , Minnesota
19.
J Evol Biol ; 31(9): 1284-1299, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29873875

RESUMO

Growth rhythm that is well synchronized with seasonal changes in local climatic conditions is understood to enhance fitness; however, rapid ongoing climate change threatens to disrupt this synchrony. To evaluate phenotypic selection on growth rhythm under expected warmer and drier future climate, seedlings from 49 populations of whitebark pine (Pinus albicaulis Engelm.) were grown and measured over more than 10 years in two common garden field experiments on sites that approximate the projected future climate of the seed origins. Selection on growth rhythm was assessed by relating individual plant fitness to timing and rate of shoot elongation. Differential survival clearly evidenced selection on growth rhythm. We detected directional and stabilizing selection that varied in magnitude between experimental sites and among years. The observed phenotypic selection supports the interpretation of clinal variation among populations within tree species as reflecting adaptive variation in response to past natural selection mediated by climate. To the extent that growth rhythm is heritable, results of the present study suggest evolution of whitebark pine toward a more distinct timing of shoot elongation and generally more rapid elongation in the immediate next generation under ongoing climate change in environments similar to the study sites.


Assuntos
Pinus/crescimento & desenvolvimento , Seleção Genética , Temperatura , Mudança Climática , Noroeste dos Estados Unidos , Fenótipo , Pinus/genética , Árvores/genética , Árvores/crescimento & desenvolvimento
20.
Ecol Appl ; 28(7): 1818-1829, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29956868

RESUMO

Ecological restoration and revegetation efforts entail the translocation of native plant populations. Risks associated with these efforts include failure of translocated populations to establish or, conversely, such strong establishment that they excessively dominate the recipient community. The role that selective breeding plays in mediating these risks is unclear but of increasing importance as efforts to restore and establish multifunctional grasslands also increase. In a three-year, spatially replicated study, we seeded experimental prairie communities with either domesticated (cultivar) or undomesticated strains of Panicum virgatum (switchgrass), a North American C4 species under development as a biomass crop. We evaluated the composition, performance, and diversity of the recipient plant communities and compared the performance of cultivar and undomesticated switchgrass in those communities. We found little evidence that switchgrass population source affected community response. Switchgrass cultivars modestly exceeded undomesticated strains with respect to stand establishment, third-year stand density, and aboveground biomass; effect size and significance differed among sites. Our results suggest that including cultivars in ecological restorations and multifunctional grasslands may enhance success of switchgrass establishment with little risk of impairing the composition or diversity of plant communities for up to three years, as reflected in the measures used here. However, the incorporation of undomesticated switchgrass into multifunctional grasslands may enhance landscape-scale genetic variation and mitigate risks associated with gene flow between translocated and local wild switchgrass populations; more research on these dynamics is needed.


Assuntos
Biomassa , Biota , Pradaria , Panicum/fisiologia , Biocombustíveis , Geografia , Minnesota , Panicum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...