Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(4)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39226913

RESUMO

The fabrication of complex and stable vasculature in engineered cardiac tissues represents a significant hurdle towards building physiologically relevant models of the heart. Here, we implemented a 3D model of cardiac vasculogenesis, incorporating endothelial cells (EC), stromal cells, and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) in a fibrin hydrogel. The presence of CMs disrupted vessel formation in 3D tissues, resulting in the upregulation of endothelial activation markers and altered extracellular vesicle (EV) signaling in engineered tissues as determined by the proteomic analysis of culture supernatant. miRNA sequencing of CM- and EC-secreted EVs highlighted key EV-miRNAs that were postulated to play differing roles in cardiac vasculogenesis, including the let-7 family and miR-126-3p in EC-EVs. In the absence of CMs, the supplementation of CM-EVs to EC monolayers attenuated EC migration and proliferation and resulted in shorter and more discontinuous self-assembling vessels when applied to 3D vascular tissues. In contrast, supplementation of EC-EVs to the tissue culture media of 3D vascularized cardiac tissues mitigated some of the deleterious effects of CMs on vascular self-assembly, enhancing the average length and continuity of vessel tubes that formed in the presence of CMs. Direct transfection validated the effects of the key EC-EV miRNAs let-7b-5p and miR-126-3p in improving the maintenance of continuous vascular networks. EC-EV supplementation to biofabricated cardiac tissues and microfluidic devices resulted in tissue vascularization, illustrating the use of this approach in the engineering of enhanced, perfusable, microfluidic models of the myocardium.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Miócitos Cardíacos , Engenharia Tecidual , Humanos , Vesículas Extracelulares/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , MicroRNAs/metabolismo , MicroRNAs/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Neovascularização Fisiológica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proliferação de Células , Miocárdio/metabolismo , Miocárdio/citologia
2.
Cell Stem Cell ; 31(8): 1222-1238.e10, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908380

RESUMO

The intricate anatomical structure and high cellular density of the myocardium complicate the bioengineering of perfusable vascular networks within cardiac tissues. In vivo neonatal studies highlight the key role of resident cardiac macrophages in post-injury regeneration and angiogenesis. Here, we integrate human pluripotent stem-cell-derived primitive yolk-sac-like macrophages within vascularized heart-on-chip platforms. Macrophage incorporation profoundly impacted the functionality and perfusability of microvascularized cardiac tissues up to 2 weeks of culture. Macrophages mitigated tissue cytotoxicity and the release of cell-free mitochondrial DNA (mtDNA), while upregulating the secretion of pro-angiogenic, matrix remodeling, and cardioprotective cytokines. Bulk RNA sequencing (RNA-seq) revealed an upregulation of cardiac maturation and angiogenesis genes. Further, single-nuclei RNA sequencing (snRNA-seq) and secretome data suggest that macrophages may prime stromal cells for vascular development by inducing insulin like growth factor binding protein 7 (IGFBP7) and hepatocyte growth factor (HGF) expression. Our results underscore the vital role of primitive macrophages in the long-term vascularization of cardiac tissues, offering insights for therapy and advancing heart-on-a-chip technologies.


Assuntos
Dispositivos Lab-On-A-Chip , Macrófagos , Neovascularização Fisiológica , Humanos , Macrófagos/metabolismo , Macrófagos/citologia , Miocárdio/citologia , Miocárdio/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Coração/fisiologia
3.
Stem Cells Transl Med ; 10(3): 479-491, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33231376

RESUMO

Endothelial progenitor cells (EPCs) promote the maintenance of the endothelium by secreting vasoreparative factors. A population of EPCs known as early outgrowth cells (EOCs) is being investigated as novel cell-based therapies for the treatment of cardiovascular disease. We previously demonstrated that the absence of liver X receptors (LXRs) is detrimental to the formation and function of EOCs under hypercholesterolemic conditions. Here, we investigate whether LXR activation in EOCs is beneficial for the treatment of atherosclerosis. EOCs were differentiated from the bone marrow of wild-type (WT) and LXR-knockout (Lxrαß-/-) mice in the presence of vehicle or LXR agonist (GW3965). WT EOCs treated with GW3965 throughout differentiation showed reduced mRNA expression of endothelial lineage markers (Cd144, Vegfr2) compared with WT vehicle and Lxrαß-/- EOCs. GW3965-treated EOCs produced secreted factors that reduced monocyte adhesion to activated endothelial cells in culture. When injected into atherosclerosis-prone Ldlr-/- mice, GW3965-treated EOCs, or their corresponding conditioned media (CM) were both able to reduce aortic sinus plaque burden compared with controls. Furthermore, when human EOCs (obtained from patients with established CAD) were treated with GW3965 and the CM applied to endothelial cells, monocyte adhesion was decreased, indicating that our results in mice could be translated to patients. Ex vivo LXR agonist treatment of EOCs therefore produces a secretome that decreases early atherosclerosis in Ldlr-/- mice, and additionally, CM from human EOCs significantly inhibits monocyte to endothelial adhesion. Thus, active factor(s) within the GW3965-treated EOC secretome may have the potential to be useful for the treatment of atherosclerosis.


Assuntos
Aterosclerose , Células Progenitoras Endoteliais , Receptores X do Fígado/agonistas , Secretoma , Animais , Aterosclerose/tratamento farmacológico , Benzoatos/farmacologia , Benzilaminas/farmacologia , Meios de Cultivo Condicionados/farmacologia , Humanos , Camundongos , Camundongos Knockout
4.
Sci Rep ; 9(1): 12607, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31471547

RESUMO

Placental extravillous trophoblast (EVT) invasion is essential in establishing proper blood supply to the fetus during pregnancy. However, traditional 2D in vitro systems do not model the in vivo invasion process in an anatomically-relevant manner. Our objectives were to develop a 3D spheroid model that would allow better emulation of placental invasion in vitro and to characterize the transcriptomic and functional outcomes. HTR8/SVneo EVT cells were self-assembled into 3D spheroids using ultra-low attachment plates. Transcriptomic profiling followed by gene set enrichment and gene ontology analyses revealed major global transcriptomic differences, with significant up-regulations in EVTs cultured as 3D spheroids in canonical pathways and biological processes such as immune response, angiogenesis, response to stimulus, wound healing, and others. These findings were further validated by RT-qPCR, showing significant up-regulations in genes and/or proteins related to epithelial-mesenchymal transition, cell-cell contact, angiogenesis, and invasion/migration. A high-throughput, spheroid invasion assay was applied to reveal the dynamic invasion of EVTs away from the spheroid core into extracellular matrix. Lastly, lipopolysaccharide, dexamethasone, or Δ9-tetrahydrocannabinol exposure was found to impact the invasion of EVT spheroids. Altogether, we present a well-characterized, 3D spheroid model of EVT invasion and demonstrate its potential use in drug and toxin screening during pregnancy.


Assuntos
Feto/metabolismo , Placenta/metabolismo , Transcriptoma/genética , Trofoblastos/metabolismo , Linhagem Celular , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Feto/irrigação sanguínea , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Placenta/fisiologia , Gravidez , Esferoides Celulares/metabolismo
5.
PLoS One ; 13(6): e0199632, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940046

RESUMO

The incorporation of the extracellular matrix (ECM) is essential for generating in vitro models that truly represent the microarchitecture found in human tissues. However, the cell-cell and cell-ECM interactions in vitro remains poorly understood in placental trophoblast biology. We investigated the effects of varying the surface properties (surface thickness and stiffness) of two ECMs, collagen I and Matrigel, on placental trophoblast cell morphology, viability, proliferation, and expression of markers involved in differentiation/syncytial fusion. Most notably, thicker Matrigel surfaces were found to induce the self-assembly of trophoblast cells into 3D spheroids that exhibited thickness-dependent changes in viability, proliferation, syncytial fusion, and gene expression profiles compared to two-dimensional cultures. Changes in F-actin organization, cell spread morphologies, and integrin and matrix metalloproteinase gene expression profiles, further reveal that the response to surface thickness may be mediated in part through cellular stiffness-sensing mechanisms. Our derivation of self-assembling trophoblast spheroid cultures through regulation of ECM surface alone contributes to a deeper understanding of cell-ECM interactions, and may be important for the advancement of in vitro platforms for research or diagnostics.


Assuntos
Matriz Extracelular/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Colágeno/química , Colágeno Tipo I/química , Combinação de Medicamentos , Elasticidade , Matriz Extracelular/química , Humanos , Hidrogéis/química , Laminina/química , Proteoglicanas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA