Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Immunol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775402

RESUMO

The response to type I IFNs involves the rapid induction of prototypical IFN signature genes (ISGs). It is not known whether the tightly controlled ISG expression observed at the cell population level correctly represents the coherent responses of individual cells or whether it masks some heterogeneity in gene modules and/or responding cells. We performed a time-resolved single-cell analysis of the first 3 h after in vivo IFN stimulation in macrophages and CD4+ T and B lymphocytes from mice. All ISGs were generally induced in concert, with no clear cluster of faster- or slower-responding ISGs. Response kinetics differed between cell types: mostly homogeneous for macrophages, but with far more kinetic diversity among B and T lymphocytes, which included a distinct subset of nonresponsive cells. Velocity analysis confirmed the differences between macrophages in which the response progressed throughout the full 3 h, versus B and T lymphocytes in which it was rapidly curtailed by negative feedback and revealed differences in transcription rates between the lineages. In all cell types, female cells responded faster than their male counterparts. The ISG response thus seems to proceed as a homogeneous gene block, but with kinetics that vary between immune cell types and with sex differences that might underlie differential outcomes of viral infections.

2.
Sci Adv ; 9(44): eadh7693, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910612

RESUMO

Teleost fish form the largest group of vertebrates and show a tremendous variety of adaptive behaviors, making them critically important for the study of brain evolution and cognition. The neural basis mediating these behaviors remains elusive. We performed a systematic comparative survey of the goldfish telencephalon. We mapped cell types using single-cell RNA sequencing and spatial transcriptomics, resulting in de novo molecular neuroanatomy parcellation. Glial cells were highly conserved across 450 million years of evolution separating mouse and goldfish, while neurons showed diversity and modularity in gene expression. Specifically, somatostatin interneurons, famously interspersed in the mammalian isocortex for local inhibitory input, were curiously aggregated in a single goldfish telencephalon nucleus but molecularly conserved. Cerebral nuclei including the striatum, a hub for motivated behavior in amniotes, had molecularly conserved goldfish homologs. We suggest elements of a hippocampal formation across the goldfish pallium. Last, aiding study of the teleostan everted telencephalon, we describe substantial molecular similarities between goldfish and zebrafish neuronal taxonomies.


Assuntos
Carpa Dourada , Peixe-Zebra , Animais , Camundongos , Carpa Dourada/genética , Córtex Cerebral , Hipocampo/metabolismo , Neurônios/metabolismo , Mamíferos
3.
Curr Top Microbiol Immunol ; 441: 1-19, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37695423

RESUMO

Women have a stronger immune response and a higher frequency of most autoimmune diseases than men. While much of the difference between men and women is due to the effect of gonadal hormones, genetic differences play a major role in the difference between the immune response and disease frequencies in women and men. Here, we focus on the immune differences between the sexes that are not downstream of the gonadal hormones. These differences include the gene content of the sex chromosomes, the inactivation of chromosome X in women, the consequences of non-random X inactivation and escape from inactivation, and the states that are uniquely met by the immune system of women-pregnancy, birth, and breast feeding. While these female-specific states are temporary and involve gonadal hormonal changes, they may leave a long-lasting footprint on the health of women, for example, by fetal cells that remain in the mother's body for decades. We also briefly discuss the immune phenotype of congenital sex chromosomal aberrations and experimental models that enable hormonal and the non-hormonal effects of the sex chromosomes to be disentangled. The increasing human life expectancy lengthens the period during which gonadal hormones levels are reduced in both sexes. A better understanding of the non-hormonal effects of sex chromosomes thus becomes more important for improving the life quality during that period.


Assuntos
Doenças Autoimunes , Caracteres Sexuais , Gravidez , Feminino , Humanos , Masculino , Doenças Autoimunes/genética , Fenótipo , Qualidade de Vida
4.
Front Immunol ; 14: 1116392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711610

RESUMO

Most human genes code for more than one transcript. Different ratios of transcripts of the same gene can be found in different cell types or states, indicating differential use of transcription start sites or differential splicing. Such differential transcript use (DTUs) events provide an additional layer of regulation and protein diversity. With the exceptions of PTPRC and CIITA, there are very few reported cases of DTU events in the immune system. To rigorously map DTUs between different human immune cell types, we leveraged four publicly available RNA sequencing datasets. We identified 282 DTU events between five human healthy immune cell types that appear in at least two datasets. The patterns of the DTU events were mostly cell-type-specific or lineage-specific, in the context of the five cell types tested. DTUs correlated with the expression pattern of potential regulators, namely, splicing factors and transcription factors. Of the several immune related conditions studied, only sepsis affected the splicing of more than a few genes and only in innate immune cells. Taken together, we map the DTUs landscape in human peripheral blood immune cell types, and present hundreds of genes whose transcript use changes between cell types or upon activation.


Assuntos
Sistema Imunitário , Splicing de RNA , Humanos , Tipagem e Reações Cruzadas Sanguíneas , Nível de Saúde , Fatores de Processamento de RNA
5.
Microbiol Spectr ; 11(4): e0040023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395658

RESUMO

Plasmids contribute to microbial diversity and adaptation, providing microorganisms with the ability to thrive in a wide range of conditions in extreme environments. However, while the number of marine microbiome studies is constantly increasing, very little is known about marine plasmids, and they are very poorly represented in public databases. To extend the repertoire of environmental marine plasmids, we established a pipeline for the de novo assembly of plasmids in the marine environment by analyzing available microbiome metagenomic sequencing data. By applying the pipeline to data from the Red Sea, we identified 362 plasmid candidates. We showed that the distribution of plasmids corresponds to environmental conditions, particularly, depth, temperature, and physical location. At least 7 of the 362 candidates are most probably real plasmids, based on a functional analysis of their open reading frames (ORFs). Only one of the seven has been described previously. Three plasmids were identified in other public marine metagenomic data from different locations all over the world; these plasmids contained different cassettes of functional genes at each location. Analysis of antibiotic and metal resistance genes revealed that the same positions that were enriched with genes encoding resistance to antibiotics were also enriched with resistance to metals, suggesting that plasmids contribute site-dependent phenotypic modules to their ecological niches. Finally, half of the ORFs (50.8%) could not be assigned to a function, emphasizing the untapped potential of the unique marine plasmids to provide proteins with multiple novel functions. IMPORTANCE Marine plasmids are understudied and hence underrepresented in databases. Plasmid functional annotation and characterization is complicated but, if successful, may provide a pool of novel genes and unknown functions. Newly discovered plasmids and their functional repertoire are potentially valuable tools for predicting the dissemination of antimicrobial resistance, providing vectors for molecular cloning and an understanding of plasmid-bacterial interactions in various environments.


Assuntos
Antibacterianos , Metagenômica , Oceano Índico , Plasmídeos/genética , Metagenoma
6.
J Exp Med ; 220(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976164

RESUMO

"γc" cytokines are a family whose receptors share a "common-gamma-chain" signaling moiety, and play central roles in differentiation, homeostasis, and communications of all immunocyte lineages. As a resource to better understand their range and specificity of action, we profiled by RNAseq the immediate-early responses to the main γc cytokines across all immunocyte lineages. The results reveal an unprecedented landscape: broader, with extensive overlap between cytokines (one cytokine doing in one cell what another does elsewhere) and essentially no effects unique to any one cytokine. Responses include a major downregulation component and a broad Myc-controlled resetting of biosynthetic and metabolic pathways. Various mechanisms appear involved: fast transcriptional activation, chromatin remodeling, and mRNA destabilization. Other surprises were uncovered: IL2 effects in mast cells, shifts between follicular and marginal zone B cells, paradoxical and cell-specific cross-talk between interferon and γc signatures, or an NKT-like program induced by IL21 in CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Citocinas , Transdução de Sinais , Diferenciação Celular
7.
Front Endocrinol (Lausanne) ; 13: 1059936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568080

RESUMO

The giant freshwater prawn pjMacrobrachium rosenbergii is one of the best studied species in aquaculture. However, the transcriptional changes associated with embryonic development and the sexual differentiation mechanism of M. rosenbergii remain to be elucidated. To characterize the embryonic development of this prawn and to determine whether differential expression and differential splicing play roles in the early sexual differentiation of M. rosenbergii, we profiled five developmental days of male and female embryos by RNA sequencing. We identified modules of co-expressed genes representing waves of transcription that correspond to physiological processes in early embryonic development (such as the maternal-to-zygotic transition) up to preparation for life outside the egg (development of muscles, cuticle etc.). Additionally, we found that hundreds of genes are differentially expressed between sexes, most of them uncharacterized, suggesting that the sex differentiation mechanism of M. rosenbergii might contain clade-specific elements. The resulting first-of-a-kind transcriptional map of embryonic development of male and female M. rosenbergii will guide future studies to reveal the roles of specific genes and splicing isoforms in the embryonic development and sexual differentiation process of M. rosenbergii.


Assuntos
Decápodes , Palaemonidae , Animais , Feminino , Masculino , Palaemonidae/genética , Palaemonidae/metabolismo , Diferenciação Sexual/genética , Desenvolvimento Embrionário/genética , Água Doce
8.
Physiology (Bethesda) ; 37(2): 55-68, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34514870

RESUMO

Despite numerous studies of immune sexual dimorphism, sexual differences are not rigorously mapped and dimorphic mechanisms are incompletely understood. Current immune research typically studies sex differences in specific cells, tissues, or diseases but without providing an integrated picture. To connect the dots, we suggest comprehensive research approaches to better our understanding of immune sexual dimorphism and its mechanisms.


Assuntos
Caracteres Sexuais , Feminino , Humanos , Masculino
9.
Nucleic Acids Res ; 49(W1): W162-W168, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33988713

RESUMO

Alternative splicing results in multiple transcripts of the same gene, possibly encoding for different protein isoforms with different domains. Whereas it is possible to manually determine the effect of alternative splicing on the domain composition for a single event, the process requires the tedious integration of several data sources; it is error prone and not feasible for genome-wide characterization of domains affected by differential splicing. To fulfill the need for an automated solution, we developed the Domain Change Presenter (DoChaP, https://dochap.bgu.ac.il/), a web server for the visualization of exon-domain associations. DoChaP visualizes all transcripts of a given gene, the encoded proteins and their domains, and enables a comparison between the transcripts and between their protein products. The colors and organization make the structural effect of alternative splicing events on protein structures easily identified. To enable the study of the conservation of exons structure, alternative splicing, and the effect of alternative splicing on protein domains, DoChaP also provides a two-species comparison of exon-domain associations. DoChaP thus provides a unique and easy-to-use visualization of the exon-domain association and conservation, and will facilitate the study of the structural effects of alternative splicing in health and disease.


Assuntos
Processamento Alternativo , Éxons , Domínios Proteicos , Software , Animais , Genômica , Humanos , Camundongos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Proteínas de Xenopus/química , Proteínas de Peixe-Zebra/química
10.
J Clin Invest ; 130(6): 3238-3252, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154791

RESUMO

As treatment of the early, inflammatory phase of sepsis improves, post-sepsis immunosuppression and secondary infection have increased in importance. How early inflammation drives immunosuppression remains unclear. Although IFN-γ typically helps microbial clearance, we found that increased plasma IFN-γ in early clinical sepsis was associated with the later development of secondary Candida infection. Consistent with this observation, we found that exogenous IFN-γ suppressed macrophage phagocytosis of zymosan in vivo, and antibody blockade of IFN-γ after endotoxemia improved survival of secondary candidemia. Transcriptomic analysis of innate lymphocytes during endotoxemia suggested that NKT cells drove IFN-γ production by NK cells via mTORC1. Activation of invariant NKT (iNKT) cells with glycolipid antigen drove immunosuppression. Deletion of iNKT cells in Cd1d-/- mice or inhibition of mTOR by rapamycin reduced immunosuppression and susceptibility to secondary Candida infection. Thus, although rapamycin is typically an immunosuppressive medication, in the context of sepsis, rapamycin has the opposite effect. These results implicated an NKT cell/mTOR/IFN-γ axis in immunosuppression following endotoxemia or sepsis. In summary, in vivo iNKT cells activated mTORC1 in NK cells to produce IFN-γ, which worsened macrophage phagocytosis, clearance of secondary Candida infection, and mortality.


Assuntos
Tolerância Imunológica , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células T Matadoras Naturais/imunologia , Sepse/imunologia , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/imunologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Candida/imunologia , Candidíase/genética , Candidíase/imunologia , Candidíase/patologia , Feminino , Humanos , Interferon gama/genética , Células Matadoras Naturais/patologia , Masculino , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/patologia , Sepse/genética , Sepse/patologia , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
11.
Nat Commun ; 10(1): 4295, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541153

RESUMO

Sexual dimorphism in the mammalian immune system is manifested as more frequent and severe infectious diseases in males and, on the other hand, higher rates of autoimmune disease in females, yet insights underlying those differences are still lacking. Here we characterize sex differences in the immune system by RNA and ATAC sequence profiling of untreated and interferon-induced immune cell types in male and female mice. We detect very few differentially expressed genes between male and female immune cells except in macrophages from three different tissues. Accordingly, very few genomic regions display differences in accessibility between sexes. Transcriptional sexual dimorphism in macrophages is mediated by genes of innate immune pathways, and increases after interferon stimulation. Thus, the stronger immune response of females may be due to more activated innate immune pathways prior to pathogen invasion.


Assuntos
Sistema Imunitário , Caracteres Sexuais , Transcriptoma , Animais , Biologia Computacional , Epigenômica , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica , Humanos , Imunidade Inata/genética , Interferons/metabolismo , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos , RNA , Fatores Sexuais
12.
Nat Immunol ; 20(3): 373, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30728493

RESUMO

In the version of this article initially published, three authors (Hui-Fern Kuoy, Adam P. Uldrich and Dale. I. Godfrey) and their affiliations, acknowledgments and contributions were not included. The correct information is as follows:Ayano C. Kohlgruber1,2, Shani T. Gal-Oz3, Nelson M. LaMarche1,2, Moto Shimazaki1, Danielle Duquette4, Hui-Fern Koay5,6, Hung N. Nguyen1, Amir I. Mina4, Tyler Paras1, Ali Tavakkoli7, Ulrich von Andrian2,8, Adam P. Uldrich5,6, Dale I. Godfrey5,6, Alexander S. Banks4, Tal Shay3, Michael B. Brenner1,10* and Lydia Lynch1,4,9,10*1Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA. 2Division of Medical Sciences, Harvard Medical School, Boston, MA, USA. 3Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel. 4Division of Endocrinology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. 5Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia. 6ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia. 7Department of General and Gastrointestinal Surgery, Brigham and Women's Hospital, Boston, MA, USA. 8Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, USA. 9School of Biochemistry and Immunology, Trinity College, Dublin, Ireland. 10These authors jointly supervised this work: Michael B. Brenner, Lydia Lynch. *e-mail: mbrenner@research.bwh.harvard.edu; llynch@bwh.harvard.eduAcknowledgementsWe thank A.T. Chicoine, flow cytometry core manager at the Human Immunology Center at BWH, for flow cytometry sorting. We thank D. Sant'Angelo (Rutgers Cancer Institute) for providing Zbtb16-/- mice and R. O'Brien (National Jewish Health) for providing Vg4/6-/- mice. Supported by NIH grant R01 AI11304603 (to M.B.B.), ERC Starting Grant 679173 (to L.L.), the National Health and Medical Research Council of Australia (1013667), an Australian Research Council Future Fellowship (FT140100278 for A.P.U.) and a National Health and Medical Research Council of Australia Senior Principal Research Fellowship (1117766 for D.I.G.).Author contributionsA.C.K., L.L., and M.B.B. conceived and designed the experiments, and wrote the manuscript. A.C.K., N.M.L., L.L., H.N.N., M.S., T.P., and D.D. performed the experiments. S.T.G.-O. and T.S. performed the RNA-seq analysis. A.S.B. and A.I.M. provided advice and performed the CLAMS experiments. A.T. provided human bariatric patient samples. Parabiosis experiments were performed in the laboratory of U.v.A. H.-F.K., A.P.U. and D.I.G provided critical insight into the TCR chain usage of PLZF+ γδ T cells. M.B.B., N.M.L., and L.L. critically reviewed the manuscript.The errors have been corrected in the HTML and PDF version of the article.Correction to: Nature Immunology doi:10.1038/s41590-018-0094-2 (2018), published online 18 April 2018.

14.
PLoS One ; 13(10): e0205499, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304022

RESUMO

Single-cell RNA sequencing (scRNA-seq) is an emerging technology for profiling the gene expression of thousands of cells at the single cell resolution. Currently, the labeling of cells in an scRNA-seq dataset is performed by manually characterizing clusters of cells or by fluorescence-activated cell sorting (FACS). Both methods have inherent drawbacks: The first depends on the clustering algorithm used and the knowledge and arbitrary decisions of the annotator, and the second involves an experimental step in addition to the sequencing and cannot be incorporated into the higher throughput scRNA-seq methods. We therefore suggest a different approach for cell labeling, namely, classifying cells from scRNA-seq datasets by using a model transferred from different (previously labeled) datasets. This approach can complement existing methods, and-in some cases-even replace them. Such a transfer-learning framework requires selecting informative features and training a classifier. The specific implementation for the framework that we propose, designated ''CaSTLe-classification of single cells by transfer learning,'' is based on a robust feature engineering workflow and an XGBoost classification model built on these features. Evaluation of CaSTLe against two benchmark feature-selection and classification methods showed that it outperformed the benchmark methods in most cases and yielded satisfactory classification accuracy in a consistent manner. CaSTLe has the additional advantage of being parallelizable and well suited to large datasets. We showed that it was possible to classify cell types using transfer learning, even when the databases contained a very small number of genes, and our study thus indicates the potential applicability of this approach for analysis of scRNA-seq datasets.


Assuntos
Aprendizado de Máquina , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Acesso à Informação , Animais , Conjuntos de Dados como Assunto , Embrião de Mamíferos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Pâncreas/metabolismo , Retina/metabolismo , Fatores de Tempo
15.
Nat Immunol ; 19(5): 464-474, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29670241

RESUMO

γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (Treg) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF+ γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα+ and Pdpn+ stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2+ Treg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.


Assuntos
Tecido Adiposo/citologia , Homeostase/fisiologia , Interleucina-17/metabolismo , Linfócitos T Reguladores/fisiologia , Termogênese/fisiologia , Tecido Adiposo/fisiologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T/fisiologia
16.
Elife ; 72018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29412137

RESUMO

It is well established that inducible transcription is essential for the consolidation of salient experiences into long-term memory. However, whether inducible transcription relays information about the identity and affective attributes of the experience being encoded, has not been explored. To this end, we analyzed transcription induced by a variety of rewarding and aversive experiences, across multiple brain regions. Our results describe the existence of robust transcriptional signatures uniquely representing distinct experiences, enabling near-perfect decoding of recent experiences. Furthermore, experiences with shared attributes display commonalities in their transcriptional signatures, exemplified in the representation of valence, habituation and reinforcement. This study introduces the concept of a neural transcriptional code, which represents the encoding of experiences in the mouse brain. This code is comprised of distinct transcriptional signatures that correlate to attributes of the experiences that are being committed to long-term memory.


Assuntos
Encéfalo/fisiologia , Memória de Longo Prazo , Transcrição Gênica , Ativação Transcricional , Animais , Comportamento Animal , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real
17.
J Immunol ; 198(9): 3375-3379, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28416714

RESUMO

Recent advances in single-cell RNA-sequencing (scRNA-seq) technology increase the understanding of immune differentiation and activation processes, as well as the heterogeneity of immune cell types. Although the number of available immune-related scRNA-seq datasets increases rapidly, their large size and various formats render them hard for the wider immunology community to use, and read-level data are practically inaccessible to the non-computational immunologist. To facilitate datasets reuse, we created the JingleBells repository for immune-related scRNA-seq datasets ready for analysis and visualization of reads at the single-cell level (http://jinglebells.bgu.ac.il/). To this end, we collected the raw data of publicly available immune-related scRNA-seq datasets, aligned the reads to the relevant genome, and saved aligned reads in a uniform format, annotated for cell of origin. We also added scripts and a step-by-step tutorial for visualizing each dataset at the single-cell level, through the commonly used Integrated Genome Viewer (www.broadinstitute.org/igv/). The uniform scRNA-seq format used in JingleBells can facilitate reuse of scRNA-seq data by computational biologists. It also enables immunologists who are interested in a specific gene to visualize the reads aligned to this gene to estimate cell-specific preferences for splicing, mutation load, or alleles. Thus JingleBells is a resource that will extend the usefulness of scRNA-seq datasets outside the programming aficionado realm.


Assuntos
RNA/genética , Análise de Sequência de RNA/métodos , Software , Animais , Biologia Computacional , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Genoma/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade/genética , Camundongos , Análise de Célula Única , Peixe-Zebra
18.
Stem Cell Reports ; 8(1): 163-176, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28041879

RESUMO

Hematopoietic stem cells (HSCs) are rare cells that generate all the various types of blood and immune cells. High-quality transcriptome data have enabled the identification of significant genes for HSCs. However, most genes are expressed in various forms by alternative splicing (AS), extending transcriptome complexity. Here, we delineate AS to determine which isoforms are expressed in mouse HSCs. Our analysis of microarray and RNA-sequencing data includes differential expression of splicing factors that may regulate AS, and a complete map of splicing isoforms. Multiple types of isoforms for known HSC genes and unannotated splicing that may alter gene function are presented. Transcriptome-wide identification of genes and their respective isoforms in mouse HSCs will open another dimension for adult stem cells.


Assuntos
Processamento Alternativo , Células-Tronco Hematopoéticas/metabolismo , Transcriptoma , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Proteínas de Ligação a DNA/genética , Éxons , Perfilação da Expressão Gênica , Ontologia Genética , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Íntrons , Camundongos , Fenótipo , Fatores de Transcrição/genética , Navegador
19.
Genome Biol ; 16: 16, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25622821

RESUMO

BACKGROUND: HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma. RESULTS: We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively. CONCLUSIONS: Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.


Assuntos
Cromossomos Humanos Par 7/genética , Metilação de DNA/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteínas de Homeodomínio/genética , Células-Tronco Neoplásicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Ilhas de CpG , Variações do Número de Cópias de DNA/genética , Bases de Dados Genéticas , Epigênese Genética , Loci Gênicos , Genoma Humano , Histonas/metabolismo , Proteínas Homeobox A10 , Humanos , Modelos Lineares , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...