Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 10316-10324, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38381062

RESUMO

Given the requirements for power and dimension scaling, modulating channel transport properties using high gate bias is unfavorable due to the introduction of severe leakages and large power dissipation. Hence, this work presents an ultrathin phototransistor with chemical-vapor-deposition-grown monolayer MoS2 as the channel and a 10.2 nm thick Al:HfO2 ferroelectric film as the dielectric. The proposed device is meticulously modulated utilizing an Al:HfO2 nanofilm, which passivates traps and suppresses charge Coulomb scattering with Al doping, efficiently improving carrier transport and inhibiting leakage current. Furthermore, a bipolar pulses excitable polarization method is developed to induce a nonvolatile electrostatic field. The MoS2 channel is fully depleted by the switchable and stable floating gate originating from remanent polarization, leading to a high detectivity of 2.05 × 1011 Jones per nanometer of gating layer (Jones nm-1) and photocurrent on/off ratio >104 nm-1, which are superior to the state-of-the-art phototransistors based on two-dimensional (2D) materials and ferroelectrics. The proposed polarizable nonvolatile ferroelectric gating in a monolayer MoS2 phototransistor promises a potential route toward ultrasensitive photodetectors with low power consumption that boast of high levels of integration.

2.
Nanoscale ; 15(39): 15994-16001, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37766512

RESUMO

Graphene is one of the most potential field emission cathode materials and a lot of work has been carried out to demonstrate the effectiveness of nitrogen doping (N doping) for the enhancement of field emission properties of graphene. However, the effect of N doping on graphene field emission is lacking systematic and thorough understanding. In this study, undoped graphene and N-doped graphene were prepared and characterized for measurements, and the field emission property dependence of the doping content was investigated and the tuneable effect was discussed. For the undoped graphene, the turn-on field was 7.95 V µm-1 and the current density was 7.3 µA cm-2, and for the 10 mg, 20 mg, and 30 mg N-doped graphene samples, the turn-on fields declined to 7.50 V µm-1, 6.38 V µm-1, and 7.28 V µm-1, and current densities increased to 21.0 µA cm-2, 42.6 µA cm-2, and 13.2 µA cm-2, respectively. Density functional theory (DFT) calculations revealed that N doping could bring about additional charge and then cause charge aggregation around the N atom. At the same time, it also lowered the work function, which further enhanced the field emission. The doping effect was determined by the content of the pyrrolic-type N and pyridinic-type N. Pyridinic-type N is more favourable for field emission because of its smaller work function, which is in good agreement with the experimental results. This study would be of great benefit to the understanding of N doping modulation for superior field emission properties.

3.
Front Chem ; 10: 910305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860633

RESUMO

Energy storage film is one of the most important energy storage materials, while the performance of commercial energy storage films currently cannot meet the growing industrial requirements. Hence, this work presents a h-BN/PVDF/h-BN sandwich composite structure film prepared by laminating a large area of ultrathin hexagonal boron nitride (h-BN) and polyvinylidene fluoride (PVDF), the existence of which was confirmed by using an optical microscope and elemental composition analysis based on scanning electron microscopy and X-ray diffraction. This film has an ultrahigh dielectric strength of 464.7 kV/mm and a discharged energy density of up to 19.256 J/cm3, which is much larger than the commercial energy storage film biaxially oriented polypropylene (BOPP) (<2.5 J/cm3). Although the thickness of the h-BN film is only 70 nm compared with that of PVDF (about 12 µm), the dielectric strength of the sandwich-structured film presents a great increase. It is because of the excellent insulation performance of the h-BN film that helps to resist the electron injection and migration under high electric field, and then suppress the formation and growth of the breakdown path, leading to an improvement of the charge-discharge efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...