Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(55): 7630-7633, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35713001

RESUMO

The atomic dispersion of a noble metal with a reducible support has been reported to be beneficial for catalytic hydrogenation reactions. Conversely, we found that Pt particles (3-5 nm) could be obtained on the non-reducible support Al2O3 by weakening the interaction between the metal and support using oleic acid, and the turnover frequency of catalyzing the hydrogenation of chlorinated nitrobenzene could reach 3700 h-1, which is three orders of magnitude higher than that of atomic platinum species.

2.
Chemistry ; 28(38): e202200696, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35491720

RESUMO

Nanosheets of nickel doped SAPO-34 molecular sieves in thickness of ∼10 nm (denoted as NS-Ni-SAPO-34) has been successfully prepared through a morphology-reserved method of synthesis. A special aluminum phosphate in two-dimensional layered structure is used as precursor and converts to crystallized SAPO-34 molecular sieve, in nanosheet morphology reserved from the aluminum phosphate precursor, under hydrothermal conditions with tetraethyl orthosilicate and templates of mixed amines added. It is found that adequate amount of nickel, ∼5 wt %, added to the synthetic system is a key factor for the morphology-reserved synthesis. By characterization, the nickel is proved to be doped in the framework of the molecular sieve, which more likely helps to balance the high surface energy of nanosheet products. The NS-Ni-SAPO-34 shows excellent catalytic performance for oxidation of cyclohexanone to adipic acid by gaseous oxygen.

3.
Angew Chem Int Ed Engl ; 59(7): 2606-2611, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31814218

RESUMO

Discrete nanosheets of silicon-doped AlPO4 molecular sieves (SAPO-34) with a thickness of ≈7 nm have been prepared through morphology-reserved synthesis with a lamellar aluminum phosphate as precursor. Cages of the nanosheets are in situ incorporated with copper oxide clusters. The CuO@SAPO-34 nanosheets exhibit a large external surface area with a high number of (010) channel pores on the surface. Due to the thin morphology, copper oxide clusters occupy the outmost cages with a probability >50 %. The distinctive configuration facilitates a new concept of pore mouth catalysis, i.e., reactant molecules larger than the pores cannot enter the interior of the molecular sieves but can interact with the CuO clusters at "the mouth" of the pore. In heterogeneous catalysis, CuO@SAPO-34 nanosheets have shown top performance in one-pot oxidation of cyclohexane to adipic acid by O2 , a key compound for the manufacture of nylon-66, which is so far produced using non-green nitric acid oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA