Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37896045

RESUMO

Plant diversity plays an important role in maintaining the stability of ecosystem functioning. Based on field surveys and indoor analyses, this study investigated the relationship between species diversity and community stability at different stages of bare patch succession in degraded alpine meadow ecosystems. Results show that: (1) Using the ICV (the Inverse of the Coefficient of Variation) method to analyze changes in plant community stability, community stability was generally ranked as follows: Long-term recovered patches > Healthy alpine meadow > Degraded alpine meadow > Short-term recovered patch > Bare Patches. (2) Using factor analysis to construct an evaluation system, the stability ranking based on species diversity was as follows: Healthy alpine meadow > Long-term recovered patches > Degraded alpine meadow > Short-term recovered patches > Bare Patches. (3) The community stability index was significantly positively correlated with vegetation coverage, height, biomass, species richness, Shannon-Wiener diversity index, species evenness, and Simpson's diversity index (p < 0.05). Therefore, a positive correlation exists between plant diversity and community stability, such that plant communities with a higher species diversity tend to be more stable. To maintain the plant diversity and community stability of alpine meadow ecosystems, it is necessary to consider the characteristics of grassland plant composition and community structure, as well as their influencing factors, and promote the positive succession process of grasslands.

2.
Plants (Basel) ; 11(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807625

RESUMO

Pedicularis kansuensis is an indicator species of grassland degradation. Its population expansion dramatically impacts the production and service function of the grassland ecosystem, but the effects and mechanisms of the expansion are still unclear. In order to understand the ecological effects of P. kansuensis, three P. kansuensis patches of different densities were selected in an alpine grassland, and species diversity indexes, biomasses, soil physicochemical properties, and the mechanism among them were analyzed. The results showed that P. kansuensis expansion increased the richness index, the Shannon−Wiener index significantly, and the aboveground biomass ratio (ABR) of the Weed group (p < 0.05), but reduced the total biomass of the community and the ABR of the Gramineae and Cyperaceae decreased insignificantly (p > 0.05); soil moisture, soil AOC, and NO3−·N decreased significantly (p < 0.05), while soil pH and total soil nutrients did not change significantly, and available phosphorus (AP) decreased at first and then increased (p < 0.05). The structural equation model (SEM) showed that P. kansuensis expansion had a significant positive effect on the community richness index, and a significant negative effect followed on the soil AOC from the increase of the index; the increase of pH had a significant negative effect on the soil AOC, NO3−·N, and AP. It indicated that P. kansuensis expansion resulted in the increase of species richness, the ABR of the Weed group, and the community's water demand, which promoted the over-utilization of soil available nutrients in turn, and finally caused the decline of soil quality. This study elucidated a possible mechanism of poisonous weeds expansion, and provided a scientific and theoretical basis for grassland management.

3.
Plants (Basel) ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684201

RESUMO

Biodiversity and ecosystem functions and their relationship with environmental response constitute a major topic of ecological research. However, the changes in and impact mechanisms of multi-dimensional biodiversity and ecosystem functions in continuously changing environmental gradients and anthropogenic activities remain poorly understood. Here, we analyze the effects of multi-gradient warming and grazing on relationships between the biodiversity of plant and soil microbial with productivity/community stability through a field experiment simulating multi-gradient warming and grazing in alpine grasslands on the Tibetan Plateau. We show the following results: (i) Plant biodiversity, soil microbial diversity and community productivity in alpine grasslands show fluctuating trends with temperature gradients, and a temperature increase below approximately 1 °C is beneficial to alpine grasslands; moderate grazing only increases the fungal diversity of the soil surface layer. (ii) The warming shifted plant biomass underground in alpine grasslands to obtain more water in response to the decrease in soil moisture caused by the temperature rise. Community stability was not affected by warming or grazing. (iii) Community stability was not significantly correlated with productivity, and environmental factors, rather than biodiversity, influenced community stability and productivity.

4.
Front Plant Sci ; 13: 770315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463442

RESUMO

Climate change and land-use disturbances are supposed to have severely affected the degraded alpine grasslands on the Tibetan Plateau. Artificial grassland establishment has been implemented as a restoration tool against grassland degradation. However, the impact of such degradation and restoration processes on soil microbial communities and soil quality is not clearly understood. Here, we aim to investigate how the dynamics of microbial community and soil quality of alpine grasslands respond to a gradient of degradation and that of restoration, respectively. We conducted a randomised experiment with four degradation stages (light, moderate, heavy, and extreme degradation) and three restoration stages (artificial restoration for 1, 5, and 10 years). We analysed the abundance and diversity of soil bacteria and fungi, and measured soil nutrients, enzymatic activity and microbial biomass. The concentration of soil nitrogen (TN), soil organic matter (OM) in heavy degraded grassland decreased significantly by 37.4 and 45.08% compared with that in light degraded grassland. TN and OM in 10-years restored grassland also increased significantly by 33.10 and 30.42% compared to that in 1-year restored grassland. Four soil enzymatic activity indicators related to microbial biomass decreased with degradation gradient and increased with recovery time (i.e., restoration gradient). Both bacterial and fungal community structure was significantly different among grassland degradation or restoration successional stages. The LEfSe analysis revealed that 29 fungal clades and 9 bacterial clades were susceptible to degraded succession, while16 fungal clades and 5 bacterial clades were susceptible to restoration succession. We conclude that soil quality (TN, OM, and enzymatic activity) deteriorated significantly in heavy degraded alpine grassland. Soil microbial community structure of alpine is profoundly impacted by both degradation and restoration processes, fungal communities are more sensitive to grassland succession than bacterial communities. Artificial grasslands can be used as an effective method of restoring degraded grassland, but the soil functions of artificial grassland, even after 10 years of recovery, cannot be restored to the original state of alpine grassland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...