Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128471

RESUMO

Traumatic brain injury (TBI) is a chronic and progressive disease, and management requires an understanding of both the primary neurological injury and the secondary sequelae that affect peripheral organs, including the gastrointestinal (GI) tract. The brain-gut axis is composed of bidirectional pathways through which TBI-induced neuroinflammation and neurodegeneration impact gut function. The resulting TBI-induced dysautonomia and systemic inflammation contribute to the secondary GI events, including dysmotility and increased mucosal permeability. These effects shape, and are shaped by, changes in microbiota composition and activation of resident and recruited immune cells. Microbial products and immune cell mediators in turn modulate brain-gut activity. Importantly, secondary enteric inflammatory challenges prolong systemic inflammation and worsen TBI-induced neuropathology and neurobehavioral deficits. The importance of brain-gut communication in maintaining GI homeostasis highlights it as a viable therapeutic target for TBI. Currently, treatments directed toward dysautonomia, dysbiosis, and/or systemic inflammation offer the most promise.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/microbiologia , Lesões Encefálicas Traumáticas/patologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia
4.
J Neuroinflammation ; 18(1): 24, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461596

RESUMO

BACKGROUND: Disruptions of brain-gut axis have been implicated in the progression of a variety of gastrointestinal (GI) disorders and central nervous system (CNS) diseases and injuries, including traumatic brain injury (TBI). TBI is a chronic disease process characterized by persistent secondary injury processes which can be exacerbated by subsequent challenges. Enteric pathogen infection during chronic TBI worsened cortical lesion volume; however, the pathophysiological mechanisms underlying the damaging effects of enteric challenge during chronic TBI remain unknown. This preclinical study examined the effect of intestinal inflammation during chronic TBI on associated neurobehavioral and neuropathological outcomes, systemic inflammation, and dysautonomia. METHODS: Dextran sodium sulfate (DSS) was administered to adult male C57BL/6NCrl mice 28 days following craniotomy (Sham) or TBI for 7 days to induce intestinal inflammation, followed by a return to normal drinking water for an additional 7 to 28 days for recovery; uninjured animals (Naïve) served as an additional control group. Behavioral testing was carried out prior to, during, and following DSS administration to assess changes in motor and cognitive function, social behavior, and mood. Electrocardiography was performed to examine autonomic balance. Brains were collected for histological and molecular analyses of injury lesion, neurodegeneration, and neuroinflammation. Blood, colons, spleens, mesenteric lymph nodes (mLNs), and thymus were collected for morphometric analyses and/or immune characterization by flow cytometry. RESULTS: Intestinal inflammation 28 days after craniotomy or TBI persistently induced, or exacerbated, respectively, deficits in fine motor coordination, cognition, social behavior, and anxiety-like behavior. Behavioral changes were associated with an induction, or exacerbation, of hippocampal neuronal cell loss and microglial activation in Sham and TBI mice administered DSS, respectively. Acute DSS administration resulted in a sustained systemic immune response with increases in myeloid cells in blood and spleen, as well as myeloid cells and lymphocytes in mesenteric lymph nodes. Dysautonomia was also induced in Sham and TBI mice administered DSS, with increased sympathetic tone beginning during DSS administration and persisting through the first recovery week. CONCLUSION: Intestinal inflammation during chronic experimental TBI causes a sustained systemic immune response and altered autonomic balance that are associated with microglial activation, increased neurodegeneration, and persistent neurological deficits.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Colite/complicações , Disautonomias Primárias/etiologia , Animais , Encéfalo/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Colite/imunologia , Colite/patologia , Modelos Animais de Doenças , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimunomodulação/fisiologia , Disautonomias Primárias/fisiopatologia
5.
Diabetes Metab Syndr Obes ; 14: 4875-4887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992396

RESUMO

INTRODUCTION: Endemic obesity is considered the driving force for the dramatic increase in incidence of type 2 diabetes (T2D). There is mounting evidence that chronic, low-grade inflammation driven by Th1/Th17 cells and M1 macrophages, is a critical link between obesity and insulin resistance. IL-25 promotes development of a Th2 immune response and M2 macrophages that counteract the inflammation associated with obesity and T2D. METHODS: Mice were fed a high-fat diet (HFD) for 16 weeks and then treated with IL-25 or BSA as a control for 21 days. Body weight, blood glucose levels, intraperitoneal glucose tolerance, and gene expression were evaluated in mice treated with BSA or IL-25. Ob/ob mice fed a normal control diet were also treated with BSA or IL-25 and body weight and blood glucose levels were measured. Transepithelial electrical resistance and sodium-linked glucose absorption were determined in muscle-free small intestinal tissue and glucose absorption assessed in vitro in intestinal epithelial and skeletal muscle cell lines. RESULTS: Administration of IL-25 to HFD fed mice reversed glucose intolerance, an effect mediated in part by reduction in SGLT-1 activity and Glut2 expression. Importantly, the improved glucose tolerance in HFD mice treated with IL-25 was maintained for several weeks post-treatment indicating long-term changes in glucose metabolism in obese mice. Glucose intolerance was also reversed by IL-25 treatment in genetically obese ob/ob mice without inducing weight loss. In vitro studies demonstrated that glucose absorption was inhibited by IL-25 treatment in the epithelial IPEC-1 cells but increased glucose absorption in the L6 skeletal muscle cells. This supports a direct cell-specific effect of IL-25 on glucose metabolism. CONCLUSION: These results suggest that the IL-25 pathway may be a useful target for the treatment of metabolic syndrome.

6.
Sci Rep ; 10(1): 12853, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732949

RESUMO

The pig whipworm Trichuris suis is important in swine production because of its negative effects on pig performance and, notably, to some humans with inflammatory bowel disease as a therapeutic agent that modulates inflammation. The proximal colon of T. suis-infected pigs exhibited general inflammation around day 21 after inoculation with infective eggs that is transcriptionally characterized by markers of type-2 immune activation, inflammation, cellular infiltration, tissue repair enzymes, pathways of oxidative stress, and altered intestinal barrier function. Prominent gene pathways involved the Th2-response, de novo cholesterol synthesis, fructose and glucose metabolism, basic amino acid metabolism, and bile acid transport. Upstream regulatory factor analysis implicated the bile acid/farnesoid X receptor in some of these processes. Metabolic analysis indicated changes in fatty acids, antioxidant capacity, biochemicals related to methylation, protein glycosylation, extracellular matrix structure, sugars, Krebs cycle intermediates, microbe-derived metabolites and altered metabolite transport. Close to 1,200 differentially expressed genes were modulated in the proximal colon of pigs with a persistent adult worm infection that was nearly 90% lower in pigs that had expelled worms. The results support a model to test diets that favorably alter the microbiome and improve host intestinal health in both pigs and humans exposed to Trichuris.


Assuntos
Colo/imunologia , Colo/metabolismo , Metabolômica , Doenças dos Suínos/metabolismo , Suínos , Tricuríase/metabolismo , Tricuríase/veterinária , Aminoácidos/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/biossíntese , Ácidos Graxos/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Humanos , Inflamação , Estresse Oxidativo , Receptores Citoplasmáticos e Nucleares/metabolismo , Doenças dos Suínos/imunologia , Células Th2/imunologia , Tricuríase/imunologia
7.
Transplantation ; 103(10): 2075-2089, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343575

RESUMO

BACKGROUND: Stromal laminins α4 and α5 are differentially regulated in transplant tolerance and immunity, respectively, resulting in altered T-cell trafficking. We hypothesized that laminins directly regulated T-cell activation and polarization. METHODS: Human and mouse CD4 T cells were activated in Th1, Th2, Th17, or regulatory T cell (Treg) environments with/without laminin α4 and/or α5. Laminin α5 receptors were blocked with anti-α6 integrin or anti-α-dystroglycan (αDG) monoclonal antibodies, and T-cell polarization was determined. T-cell receptor transgenic TEa CD4 cells that recognized donor alloantigen were transferred into C57BL/6 mice that received alloantigen or cardiac allografts. Laminin receptors were blocked, and TEa T-cell migration and differentiation were assessed. Laminin expression was measured in several models of immunity and tolerance. RESULTS: In diverse models, laminins α4 and α5 were differentially regulated. Immunity was associated with decreased laminin α4:α5 ratio, while tolerance was associated with an increased ratio. Laminin α4 inhibited CD4+ T-cell proliferation and Th1, Th2, and Th17 polarization but favored Treg induction. Laminin α5 favored T-cell activation and Th1, Th2, and Th17 polarization and inhibited Treg. Laminin α5 was recognized by T cell integrin α6 and is important for activation and inhibition of Treg. Laminin α5 was also recognized by T cell α-DG and required for Th17 differentiation. Anti-α6 integrin or anti-DG prolonged allograft survival. CONCLUSIONS: Laminins α4 and α5 are coinhibitory and costimulatory ligands for human and mouse CD4 T cells, respectively. Laminins and their receptors modulate immune responses by acting as one of the molecular switches for immunity or suppression.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Laminina/metabolismo , Linfonodos/metabolismo , Transferência Adotiva , Animais , Linhagem Celular Tumoral/transplante , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Rejeição de Enxerto/imunologia , Transplante de Coração/efeitos adversos , Humanos , Tolerância Imunológica , Laminina/imunologia , Linfonodos/imunologia , Ativação Linfocitária , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/imunologia
8.
Gut Microbes ; 9(5): 422-436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024817

RESUMO

An evaluation of a localized intestinal allergic type-2 response concomitant with consumption of probiotic bacteria is not well documented. This study investigated the effect of feeding probiotic Bifidobacterium animalis subspecies lactis (Bb12) or a placebo in weaned pigs that were also inoculated with Ascaris suum (A. suum) eggs to induce a strong Th2-dependent allergic type 2 immune response. Sections of jejunal mucosa were mounted in Ussing chambers to determine changes in permeability and glucose absorption, intestine and liver samples were collected for analysis of type-2 related gene expression, jejunum examined histologically, and sera and intestinal fluid were assayed for parasite antigen specific antibody. The prototypical parasite-induced secretory response to histamine and reduced absorption of glucose in the jejunum were attenuated by feeding Bb12 without a change in mucosal resistance. Parasite antigen-specific IgA response in the serum and IgG1 and IgG2 response in the ileal fluid were significantly increased in A. suum-infected pigs treated with Bb12 compared to infected pigs given the placebo. Ascaris suum-induced eosinophilia in the small intestinal mucosa was inhibited by Bb12 treatment without affecting the normal expulsion of A. suum 4th stage larvae (L4) or the morphometry of the intestine. Expression of genes associated with Th1/Th2 cells, Treg cells, mast cells, and physiological function in the intestine were modulated in A. suum infected-pigs treated with Bb12. These results suggested that Bb12 can alter local immune responses and improve intestinal function during a nematode infection by reducing components of a strong allergenic type-2 response in the pig without compromising normal parasite expulsion.


Assuntos
Ascaríase/veterinária , Ascaris suum/fisiologia , Bifidobacterium animalis/fisiologia , Glucose/metabolismo , Intestino Delgado/imunologia , Probióticos/administração & dosagem , Doenças dos Suínos/tratamento farmacológico , Animais , Ascaríase/tratamento farmacológico , Ascaríase/imunologia , Ascaríase/metabolismo , Feminino , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Masculino , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/parasitologia , Células Th1/imunologia , Células Th2/imunologia
9.
Brain Behav Immun ; 66: 56-69, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28676351

RESUMO

OBJECTIVES: Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. METHODS: Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. RESULTS: Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. CONCLUSION: These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury.


Assuntos
Lesões Encefálicas Traumáticas/microbiologia , Lesões Encefálicas Traumáticas/patologia , Encéfalo/fisiopatologia , Colo/patologia , Microbioma Gastrointestinal , Animais , Encéfalo/patologia , Lesões Encefálicas Traumáticas/complicações , Citrobacter rodentium , Colo/metabolismo , Sistema Nervoso Entérico/fisiopatologia , Infecções por Enterobacteriaceae/complicações , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/fisiologia
10.
J Biol Chem ; 292(26): 10801-10812, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28490634

RESUMO

Compromised gastrointestinal barrier function is strongly associated with the progressive and destructive pathologies of the two main forms of irritable bowel disease (IBD), ulcerative colitis (UC), and Crohn's disease (CD). Matriptase is a membrane-anchored serine protease encoded by suppression of tumorigenicity-14 (ST14) gene, which is critical for epithelial barrier development and homeostasis. Matriptase barrier-protective activity is linked with the glycosylphosphatidylinositol (GPI)-anchored serine protease prostasin, which is a co-factor for matriptase zymogen activation. Here we show that mRNA and protein expression of both matriptase and prostasin are rapidly down-regulated in the initiating inflammatory phases of dextran sulfate sodium (DSS)-induced experimental colitis in mice, and, significantly, the loss of these proteases precedes the appearance of clinical symptoms, suggesting their loss may contribute to disease susceptibility. We used heterozygous St14 hypomorphic mice expressing a promoter-linked ß-gal reporter to show that inflammatory colitis suppresses the activity of the St14 gene promoter. Studies in colonic T84 cell monolayers revealed that barrier disruption by the colitis-associated Th2-type cytokines, IL-4 and IL-13, down-regulates matriptase as well as prostasin through phosphorylation of the transcriptional regulator STAT6 and that inhibition of STAT6 with suberoylanilide hydroxamic acid (SAHA) restores protease expression and reverses cytokine-induced barrier dysfunction. Both matriptase and prostasin are significantly down-regulated in colonic tissues from human subjects with active ulcerative colitis or Crohn's disease, implicating the loss of this barrier-protective protease pathway in the pathogenesis of irritable bowel disease.


Assuntos
Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Serina Endopeptidases/metabolismo , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Doença de Crohn/induzido quimicamente , Doença de Crohn/genética , Doença de Crohn/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Ácidos Hidroxâmicos/farmacologia , Interleucina-13/genética , Interleucina-4/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Serina Endopeptidases/genética , Vorinostat
11.
Radiat Res ; 187(2): 241-250, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28118112

RESUMO

Detonation of a 10-kiloton nuclear bomb in an urban setting would result in >1 million casualties, the majority of which would present with combined injuries. Combined injuries, such as peripheral tissue trauma and radiation exposure, trigger inflammatory events that lead to multiple organ dysfunction (MOD) and death, with gastrointestinal (GI) and pulmonary involvement playing crucial roles. The objective of this study was to develop an animal model of combined injuries, peripheral tissue trauma (TBX animal model) combined with total body irradiation with 5% bone marrow shielding (TBI/BM5) to investigate if peripheral tissue trauma contributes to reduced survival. Male C57BL/6J mice were exposed to TBX10%, irradiation (TBI/BM5), or combined injuries (TBX10% + TBI/BM5). Experiments were conducted to evaluate mortality at day 7 after TBI/BM5. Serial euthanasia was performed at day 1, 3 and 6 or 7 after TBI/BM5 to evaluate the time course of pathophysiologic processes in combined injuries. Functional tests were performed to assess pulmonary function and GI motility. Postmortem samples of lungs and jejunum were collected to assess tissue damage. Results indicated higher lethality and shorter survival in the TBX10% +T BI/BM5 group than in the TBX10% or TBI/BM5 groups (day 1 vs. day 7 and 6, respectively). TBI/BM5 alone had no effects on the lungs but significantly impaired GI function at day 6. As expected, in the animals that received severe trauma (TBX10%), we observed impairment in lung function and delay in GI transit in the first 3 days, effects that decreased at later time points. Trauma combined with radiation (TBX10% + TBI/BM5) significantly augmented impairment of the lung and GI function in comparison to TBX10% and TBI/BM5 groups at 24 h. Histologic evaluation indicated that combined injuries caused greater tissue damage in the intestines in TBX10% + TBI/BM5 group when compared to other groups. We describe here the first combined tissue trauma/radiation injury model that will allow conduction of mechanistic studies to identify new therapeutic targets and serve as a platform for testing novel therapeutic interventions.


Assuntos
Armas Nucleares , Ferimentos e Lesões , Animais , Modelos Animais de Doenças , Trato Gastrointestinal/fisiopatologia , Trato Gastrointestinal/efeitos da radiação , Pulmão/fisiopatologia , Pulmão/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Ferimentos e Lesões/fisiopatologia
12.
Handb Exp Pharmacol ; 239: 247-267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28035531

RESUMO

Neuroimmune communications are facilitated by the production of neurotransmitters by immune cells and the generation of immune mediators by immune cells, which form a functional entity called the "neuroimmune synapse." There are several mechanisms that further facilitate neuroimmune interactions including the anatomic proximity between immune cells and nerves, the expression of receptors for neurotransmitters on immune cells and for immune mediators on nerves, and the receptor-mediated activation of intracellular signaling pathways that modulate nerve and immune phenotype and function. The bidirectional communication between nerves and immune cells is implicated in allostasis, a process that describes the continuous adaptation to an ever-changing environment. Neuroimmune interactions are amplified during inflammation by the influx of activated immune cells that significantly alter the microenvironment. In this context, the types of neurotransmitters released by activated neurons or immune cells can exert pro- or anti-inflammatory effects. Dysregulation of the enteric nervous system control of gastrointestinal functions, such as epithelial permeability and secretion as well as smooth muscle contractility, also contribute to the chronicity of inflammation. Persistent active inflammation in the gut leads to neuroimmune plasticity, which is a structural and functional remodeling in both the neural and immune systems. The importance of neuroimmune interactions has made them an emerging target in the development of novel therapies for GI pathologies.


Assuntos
Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/fisiopatologia , Gastroenteropatias/imunologia , Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/inervação , Sistema Imunitário/imunologia , Sistema Imunitário/fisiopatologia , Neuroimunomodulação , Animais , Microambiente Celular , Gastroenteropatias/terapia , Humanos , Imunidade nas Mucosas , Sinapses Imunológicas , Inflamação/imunologia , Inflamação/fisiopatologia , Macrófagos/imunologia , Mastócitos/imunologia , Neuroglia/imunologia , Plasticidade Neuronal , Reflexo , Linfócitos T/imunologia
13.
Gut Microbes ; 7(6): 486-502, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27657187

RESUMO

Shigella flexneri is a Gram-negative pathogen that invades the colonic epithelium and causes millions of cases of watery diarrhea or bacillary dysentery predominately in children under the age of 5 years in developing countries. The effector Shigella enterotoxin 2 (ShET2), or OspD3, is encoded by the sen or ospD3 gene on the virulence plasmid. Previous literature has suggested that ospD3 is in an operon downstream of the ospC1 gene, and expression of both genes is controlled by a promoter upstream of ospC1. Since the intergenic region is 328 bases in length and contains several putative promoter regions, we hypothesized the genes are independently expressed. Here we provide data that ospD3 and ospC1 are not co-transcribed and that OspC1 is not required for OspD3/ShET2 function. Most importantly, we identified strong promoter activity in the intergenic region and demonstrate that OspD3/ShET2 can be expressed and secreted independently of OspC1. This work increases our understanding of the synthesis of a unique virulence factor and provides further insights into Shigella pathogenesis.


Assuntos
Proteínas de Bactérias/biossíntese , Disenteria Bacilar/microbiologia , Regulação Bacteriana da Expressão Gênica , Shigella flexneri/metabolismo , Proteínas de Bactérias/genética , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Shigella flexneri/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
14.
Infect Immun ; 84(12): 3328-3337, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27620722

RESUMO

Infection with parasitic nematodes, especially gastrointestinal geohelminths, affects hundreds of millions of people worldwide and thus poses a major risk to global health. The host mechanism of defense against enteric nematode infection remains to be fully understood, but it involves a polarized type 2 immunity leading to alterations in intestinal function that facilitate worm expulsion. We investigated the role of interleukin-25 (IL-25) in host protection against Heligmosomoides polygyrus bakeri infection in mice. Our results showed that Il25 and its receptor subunit, Il17rb, were upregulated during a primary infection and a secondary challenge infection with H. polygyrus bakeri Genetic deletion of IL-25 (IL-25-/-) led to an attenuated type 2 cytokine response and increased worm fecundity in mice with a primary H. polygyrus bakeri infection. In addition, the full spectrum of the host memory response against a secondary infection with H. polygyrus bakeri was severely impaired in IL-25-/- mice, including delayed type 2 cytokine responses, an attenuated functional response of the intestinal smooth muscle and epithelium, diminished intestinal smooth muscle hypertrophy/hyperplasia, and impaired worm expulsion. Furthermore, exogenous administration of IL-25 restored the host protective memory response against H. polygyrus bakeri infection in IL-25-/- mice. These data demonstrate that IL-25 is critical for host protective immunity against H. polygyrus bakeri infection, highlighting its potential application as a therapeutic agent against parasitic nematode infection worldwide.


Assuntos
Memória Imunológica/fisiologia , Interleucinas/metabolismo , Nematospiroides dubius/imunologia , Infecções por Strongylida/veterinária , Células Th2/fisiologia , Animais , Arginase/genética , Arginase/metabolismo , Regulação da Expressão Gênica/imunologia , Hormônios Ectópicos/genética , Hormônios Ectópicos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Interleucinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Infecções por Strongylida/imunologia , Regulação para Cima
15.
Radiat Res ; 185(6): 591-603, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27223826

RESUMO

In this study, nonhuman primates (NHPs) exposed to lethal doses of total body irradiation (TBI) within the gastrointestinal (GI) acute radiation syndrome range, sparing ∼5% of bone marrow (TBI-BM5), were used to evaluate the mechanisms involved in development of the chronic GI syndrome. TBI increased mucosal permeability in the jejunum (12-14 Gy) and proximal colon (13-14 Gy). TBI-BM5 also impaired mucosal barrier function at doses ranging from 10-12.5 Gy in both small intestine and colon. Timed necropsies of NHPs at 6-180 days after 10 Gy TBI-BM5 showed that changes in small intestine preceded those in the colon. Chronic GI syndrome in NHPs is characterized by continued weight loss and intermittent GI syndrome symptoms. There was a long-lasting decrease in jejunal glucose absorption coincident with reduced expression of the sodium-linked glucose transporter. The small intestine and colon showed a modest upregulation of several different pro-inflammatory mediators such as NOS-2. The persistent inflammation in the post-TBI-BM5 period was associated with a long-lasting impairment of mucosal restitution and a reduced expression of intestinal and serum levels of alkaline phosphatase (ALP). Mucosal healing in the postirradiation period is dependent on sparing of stem cell crypts and maturation of crypt cells into appropriate phenotypes. At 30 days after 10 Gy TBI-BM5, there was a significant downregulation in the gene and protein expression of the stem cell marker Lgr5 but no change in the gene expression of enterocyte or enteroendocrine lineage markers. These data indicate that even a threshold dose of 10 Gy TBI-BM5 induces a persistent impairment of both mucosal barrier function and restitution in the GI tract and that ALP may serve as a biomarker for these events. These findings have important therapeutic implications for the design of medical countermeasures.


Assuntos
Medula Óssea , Trato Gastrointestinal/efeitos da radiação , Lesões Experimentais por Radiação/etiologia , Proteção Radiológica , Irradiação Corporal Total/efeitos adversos , Animais , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Trato Gastrointestinal/fisiopatologia , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Macaca mulatta , Masculino , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Regeneração/efeitos da radiação
16.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G130-41, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27173511

RESUMO

Despite increased appreciation for the role of nicotinic receptors in the modulation of and response to inflammation, the contribution of muscarinic receptors to mucosal homeostasis, clearance of enteric pathogens, and modulation of immune cell function remains relatively undefined. Uninfected and Nippostrongylus brasiliensis-infected wild-type and type 3 muscarinic receptor (M3R)-deficient (Chrm3(-/-)) mice were studied to determine the contribution of M3R to mucosal homeostasis as well as host defense against the TH2-eliciting enteric nematode N. brasiliensis Intestinal permeability and expression of TH1/TH17 cytokines were increased in uninfected Chrm3(-/-) small intestine. Notably, in Chrm3(-/-) mice infected with N. brasiliensis, small intestinal upregulation of TH2 cytokines was attenuated and nematode clearance was delayed. In Chrm3(-/-) mice, TH2-dependent changes in small intestinal function including smooth muscle hypercontractility, increased epithelial permeability, decreased epithelial secretion and absorption, and goblet cell expansion were absent despite N. brasiliensis infection. These findings identify an important role for M3R in host defense and clearance of N. brasiliensis, and support the expanding role of cholinergic muscarinic receptors in maintaining mucosal homeostasis.


Assuntos
Citocinas/metabolismo , Imunidade nas Mucosas , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Nippostrongylus/patogenicidade , Receptor Muscarínico M3/metabolismo , Infecções por Strongylida/metabolismo , Células Th2/metabolismo , Animais , Células Cultivadas , Citocinas/imunologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nippostrongylus/imunologia , Fenótipo , Receptor Muscarínico M3/deficiência , Receptor Muscarínico M3/genética , Infecções por Strongylida/genética , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Células Th2/imunologia , Células Th2/parasitologia , Fatores de Tempo
17.
Gastroenterology ; 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-27144618

RESUMO

This review examines the fundamentals of neurogastroenterology that may underlie the pathophysiology of functional GI disorders (FGIDs). It was prepared by an invited committee of international experts and represents an abbreviated version of their consensus document that will be published in its entirety in the forthcoming book and online version entitled ROME IV. It emphasizes recent advances in our understanding of the enteric nervous system, sensory physiology underlying pain, and stress signaling pathways. There is also a focus on neuroimmmune signaling and intestinal barrier function, given the recent evidence implicating the microbiome, diet, and mucosal immune activation in FGIDs. Together, these advances provide a host of exciting new targets to identify and treat FGIDs and new areas for future research into their pathophysiology.

18.
Infect Immun ; 84(4): 1032-1044, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810038

RESUMO

Nematode infection upregulates interleukin-4 (IL-4) and IL-13 and induces STAT6-dependent changes in gut function that promote worm clearance. IL-4 and IL-13 activate the type 2 IL-4 receptor (IL-4R), which contains the IL-13Rα1 and IL-4Rα chains. We used mice deficient in IL-13Rα1 (IL-13Rα1(-/-)) to examine the contribution of IL-13 acting at the type 2 IL-4R to immune and functional responses to primary (Hb1) and secondary (Hb2) infections with the gastrointestinal nematode parasite Heligmosomoides bakeri There were differences between strains in the IL-4 and IL-13 expression responses to Hb1 but not Hb2 infection. Following Hb2 infection, deficient mice had impaired worm expulsion and higher worm fecundity despite normal production of Th2-derived cytokines. The upregulation of IL-25 and IL-13Rα2 in Hb1- and Hb2-infected wild-type (WT) mice was absent in IL-13Rα1(-/-)mice. Goblet cell numbers and resistin-like molecule beta (RELM-ß) expression were attenuated significantly in IL-13Rα1(-/-)mice following Hb2 infections. IL-13Rα1 contributes to the development of alternatively activated macrophages, but the type 1 IL-4R is also important. Hb1 infection had no effects on smooth muscle function or epithelial permeability in either strain, while the enhanced mucosal permeability and changes in smooth muscle function and morphology observed in response to Hb2 infection in WT mice were absent in IL-13Rα1(-/-)mice. Notably, the contribution of claudin-2, which has been linked to IL-13, does not mediate the increased mucosal permeability following Hb2 infection. These results show that activation of IL-13Rα1 is critical for key aspects of the immune and functional responses to Hb2 infection that facilitate expulsion.


Assuntos
Heligmosomatoidea , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Enteropatias Parasitárias/metabolismo , Infecções por Strongylida/imunologia , Animais , Feminino , Subunidade alfa1 de Receptor de Interleucina-13/genética , Enteropatias Parasitárias/imunologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Infecções por Strongylida/parasitologia
20.
J Immunol ; 195(10): 4771-80, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26423151

RESUMO

IL-25 or IL-17E is a member of IL-17 cytokine family and has immune-modulating activities. The role of IL-25 in maintaining lipid metabolic homeostasis remains unknown. We investigated the effects of exogenous IL-25 or deficiency of IL-25 on hepatic lipid accumulation. IL-25 expression was examined in paraffin-embedded tissue sections of liver from patients or in the livers from mice. Mouse model of steatosis was induced by feeding a high-fat diet (HFD). Extent of steatosis as well as expression of cytokines, key enzymes for lipid metabolic pathways, markers for Kupffer cells/macrophages, and lipid droplet (LD) proteins, were analyzed. Our results show that hepatic steatosis in mice was accompanied by increased LD proteins, but decreased IL-25 in the liver. Decreased hepatic IL-25 was also observed in patients with fatty liver. Administration of IL-25 to HFD-fed wild-type mice led to a significant improvement in hepatic steatosis. This effect was associated with increased expression of IL-13, development of alternatively activated Kupffer cells/macrophages, and decreased expression of LD proteins in the liver. In contrast, administration of IL-25 to HFD-fed mice deficient in STAT6 or IL-13 had no effects. In addition, stimulation of primary hepatocytes with IL-13, but not IL-25, resulted in downregulation of LD proteins. Finally, mice deficient in IL-25 had exacerbated hepatic lipid accumulation when fed the HFD. These data demonstrate that dysregulated IL-25 expression contributes to lipid accumulation, whereas exogenous IL-25 protects against hepatic steatosis through IL-13 activation of STAT6. IL-25 and IL-13 are potential therapeutic agents for hepatic steatosis and associated pathologies.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/imunologia , Interleucina-13/imunologia , Interleucinas/imunologia , Gotículas Lipídicas/imunologia , Fator de Transcrição STAT6/imunologia , Animais , Células Cultivadas , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado Gorduroso/prevenção & controle , Hepatócitos/imunologia , Hepatócitos/patologia , Interleucina-13/genética , Interleucinas/genética , Interleucinas/farmacologia , Gotículas Lipídicas/patologia , Camundongos , Camundongos Knockout , Fator de Transcrição STAT6/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...