Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136180

RESUMO

Pulmonary hypertension (PH) resulting from chronic hypoxia (CH) occurs in patients with chronic obstructive pulmonary diseases, sleep apnea, and restrictive lung diseases, as well as in residents at high altitude. Previous studies from our group and others demonstrate a detrimental role of reactive oxygen species (ROS) in the pathogenesis of CH-induced PH, although the subcellular sources of ROS are not fully understood. We hypothesized that mitochondria-derived ROS (mtROS) contribute to enhanced vasoconstrictor reactivity and PH following CH. To test the hypothesis, we exposed rats to 4 weeks of hypobaric hypoxia (PB ≈ 380 mmHg), with control rats housed in ambient air (PB ≈ 630 mmHg). Chronic oral administration of the mitochondria-targeted antioxidant MitoQ attenuated CH-induced decreases in pulmonary artery (PA) acceleration time, increases in right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary arterial remodeling. In addition, endothelium-intact PAs from CH rats exhibited a significantly greater basal tone compared to those from control animals, as was eliminated via MitoQ. CH also augmented the basal tone in endothelium-disrupted PAs, a response associated with increased mtROS production in primary PA smooth muscle cells (PASMCs) from CH rats. However, we further uncovered an effect of NO synthase inhibition with Nω-nitro-L-arginine (L-NNA) to unmask a potent endothelial vasoconstrictor influence that accentuates mtROS-dependent vasoconstriction following CH. This basal tone augmentation in the presence of L-NNA disappeared following combined endothelin A and B receptor blockade with BQ123 and BQ788. The effects of using CH to augment vasoconstriction and PASMC mtROS production in exogenous endothelin 1 (ET-1) were similarly prevented by MitoQ. We conclude that mtROS participate in the development of CH-induced PH. Furthermore, mtROS signaling in PASMCs is centrally involved in enhanced pulmonary arterial constriction following CH, a response potentiated by endogenous ET-1.

2.
Sci Transl Med ; 14(638): eabl8574, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353543

RESUMO

Perinatal inflammatory stress is associated with early life morbidity and lifelong consequences for pulmonary health. Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25 to 40% of preterm births. Severe chorioamnionitis with preterm birth is associated with significantly increased risk of pulmonary disease and secondary infections in childhood, suggesting that fetal inflammation may markedly alter the development of the lung. Here, we used intra-amniotic lipopolysaccharide (LPS) challenge to induce experimental chorioamnionitis in a prenatal rhesus macaque (Macaca mulatta) model that mirrors structural and temporal aspects of human lung development. Inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure, particularly the close association and coordinated differentiation of alveolar type 1 pneumocytes and specialized alveolar capillary endothelium. Single-cell RNA sequencing analysis defined a multicellular alveolar signaling niche driving alveologenesis that was extensively disrupted by perinatal inflammation, leading to a loss of gas exchange surface and alveolar simplification, with notable resemblance to chronic lung disease in newborns. Blockade of the inflammatory cytokines interleukin-1ß and tumor necrosis factor-α ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells, restoring structural integrity and key signaling networks in the developing alveolus. These data provide new insight into the pathophysiology of developmental lung injury and suggest that modulating inflammation is a promising therapeutic approach to prevent fetal consequences of chorioamnionitis.


Assuntos
Corioamnionite , Nascimento Prematuro , Animais , Corioamnionite/induzido quimicamente , Corioamnionite/patologia , Feminino , Pulmão/patologia , Macaca mulatta , Gravidez , Nascimento Prematuro/prevenção & controle , Troca Gasosa Pulmonar
3.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L968-L980, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997513

RESUMO

Chronic hypoxia (CH)-induced pulmonary hypertension (PH) results, in part, from T helper-17 (TH17) cell-mediated perivascular inflammation. However, the antigen(s) involved is unknown. Cellular immunity to collagen type V (col V) develops after ischemia-reperfusion injury during lung transplant and is mediated by naturally occurring (n)TH17 cells. Col5a1 gene codifies for the α1-helix of col V, which is normally hidden from the immune system within type I collagen in the extracellular matrix. COL5A1 promoter analysis revealed nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) binding sites. Therefore, we hypothesized that smooth muscle NFATc3 upregulates col V expression, leading to nTH17 cell-mediated autoimmunity to col V in response to CH, representing an upstream mechanism in PH development. To test our hypothesis, we measured indexes of PH in inducible smooth muscle cell (SMC)-specific NFATc3 knockout (KO) mice exposed to either CH (380 mmHg) or normoxia and compared them with wild-type (WT) mice. KO mice did not develop PH. In addition, COL5A1 was one of the 1,792 genes differentially affected by both CH and SMC NFATc3 in isolated intrapulmonary arteries, which was confirmed by RT-PCR and immunostaining. Cellular immunity to col V was determined using a trans vivo delayed-type hypersensitivity assay (Tv-DTH). Tv-DTH response was evident only when splenocytes were used from control mice exposed to CH but not from KO mice, and mediated by nTH17 cells. Our results suggest that SMC NFATc3 is important for CH-induced PH in adult mice, in part, by regulating the expression of the lung self-antigen COL5A1 protein contributing to col V-reactive nTH17-mediated inflammation and hypertension.


Assuntos
Colágeno Tipo V/metabolismo , Hipertensão Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Núcleo Celular/metabolismo , Imunidade Celular/fisiologia , Transplante de Pulmão/métodos
4.
Am J Respir Cell Mol Biol ; 62(6): 732-746, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048876

RESUMO

Pulmonary vasoconstriction resulting from intermittent hypoxia (IH) contributes to pulmonary hypertension (pHTN) in patients with sleep apnea (SA), although the mechanisms involved remain poorly understood. Based on prior studies in patients with SA and animal models of SA, the objective of this study was to evaluate the role of PKCß and mitochondrial reactive oxygen species (mitoROS) in mediating enhanced pulmonary vasoconstrictor reactivity after IH. We hypothesized that PKCß mediates vasoconstriction through interaction with the scaffolding protein PICK1 (protein interacting with C kinase 1), activation of mitochondrial ATP-sensitive potassium channels (mitoKATP), and stimulated production of mitoROS. We further hypothesized that this signaling axis mediates enhanced vasoconstriction and pHTN after IH. Rats were exposed to IH or sham conditions (7 h/d, 4 wk). Chronic oral administration of the antioxidant Tempol or the PKCß inhibitor LY-333531 abolished IH-induced increases in right ventricular systolic pressure and right ventricular hypertrophy. Furthermore, scavengers of O2- or mitoROS prevented enhanced PKCß-dependent vasoconstrictor reactivity to endothelin-1 in pulmonary arteries from IH rats. In addition, this PKCß/mitoROS signaling pathway could be stimulated by the PKC activator PMA in pulmonary arteries from control rats, and in both rat and human pulmonary arterial smooth muscle cells. These responses to PMA were attenuated by inhibition of mitoKATP or PICK1. Subcellular fractionation and proximity ligation assays further demonstrated that PKCß acutely translocates to mitochondria upon stimulation and associates with PICK1. We conclude that a PKCß/mitoROS signaling axis contributes to enhanced vasoconstriction and pHTN after IH. Furthermore, PKCß mediates pulmonary vasoconstriction through interaction with PICK1, activation of mitoKATP, and subsequent mitoROS generation.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Mitocôndrias/fisiologia , Proteína Quinase C beta/fisiologia , Artéria Pulmonar/fisiopatologia , Vasoconstrição/fisiologia , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Células Cultivadas , Óxidos N-Cíclicos/farmacologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Sequestradores de Radicais Livres/farmacologia , Humanos , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Hipóxia/enzimologia , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Canais de Potássio/metabolismo , Mapeamento de Interação de Proteínas , Artéria Pulmonar/enzimologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Síndromes da Apneia do Sono/fisiopatologia , Marcadores de Spin , Acetato de Tetradecanoilforbol/farmacologia
5.
Am J Physiol Heart Circ Physiol ; 318(2): H470-H483, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922892

RESUMO

Reactive oxygen species (ROS), mitochondrial dysfunction, and excessive vasoconstriction are important contributors to chronic hypoxia (CH)-induced neonatal pulmonary hypertension. On the basis of evidence that PKCß and mitochondrial oxidative stress are involved in several cardiovascular and metabolic disorders, we hypothesized that PKCß and mitochondrial ROS (mitoROS) signaling contribute to enhanced pulmonary vasoconstriction in neonatal rats exposed to CH. To test this hypothesis, we examined effects of the PKCß inhibitor LY-333,531, the ROS scavenger 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and the mitochondrial antioxidants mitoquinone mesylate (MitoQ) and (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) on vasoconstrictor responses in saline-perfused lungs (in situ) or pressurized pulmonary arteries from 2-wk-old control and CH (12-day exposure, 0.5 atm) rats. Lungs from CH rats exhibited greater basal tone and vasoconstrictor sensitivity to 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619). LY-333,531 and TEMPOL attenuated these effects of CH, while having no effect in lungs from control animals. Basal tone was similarly elevated in isolated pulmonary arteries from neonatal CH rats compared with control rats, which was inhibited by both LY-333,531 and mitochondria-targeted antioxidants. Additional experiments assessing mitoROS generation with the mitochondria-targeted ROS indicator MitoSOX revealed that a PKCß-mitochondrial oxidant signaling pathway can be pharmacologically stimulated by the PKC activator phorbol 12-myristate 13-acetate in primary cultures of pulmonary artery smooth muscle cells (PASMCs) from control neonates. Finally, we found that neonatal CH increased mitochondrially localized PKCß in pulmonary arteries as assessed by Western blotting of subcellular fractions. We conclude that PKCß activation leads to mitoROS production in PASMCs from neonatal rats. Furthermore, this signaling axis may account for enhanced pulmonary vasoconstrictor sensitivity following CH exposure.NEW & NOTEWORTHY This research demonstrates a novel contribution of PKCß and mitochondrial reactive oxygen species signaling to increased pulmonary vasoconstrictor reactivity in chronically hypoxic neonates. The results provide a potential mechanism by which chronic hypoxia increases both basal and agonist-induced pulmonary arterial smooth muscle tone, which may contribute to neonatal pulmonary hypertension.


Assuntos
Hipóxia/metabolismo , Proteína Quinase C beta/metabolismo , Animais , Animais Recém-Nascidos , Doença Crônica , Óxidos N-Cíclicos/farmacologia , Inibidores Enzimáticos , Feminino , Sequestradores de Radicais Livres , Indóis/farmacologia , Maleimidas/farmacologia , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Gravidez , Proteína Quinase C beta/antagonistas & inibidores , Artéria Pulmonar/efeitos dos fármacos , Circulação Pulmonar , Ratos , Espécies Reativas de Oxigênio , Marcadores de Spin , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Vasoconstrição , Vasoconstritores/farmacologia
6.
Am J Respir Cell Mol Biol ; 62(1): 61-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31264901

RESUMO

Chronic hypoxia augments pressure- and agonist-induced pulmonary vasoconstriction through myofilament calcium sensitization. NADPH oxidases contribute to the development of pulmonary hypertension, and both epidermal growth factor receptor and Src kinases can regulate NADPH oxidase. We tested the hypothesis that Src-epidermal growth factor receptor (EGFR) signaling mediates enhanced vasoconstrictor sensitivity after chronic hypoxia through NADPH oxidase-derived superoxide generation. Protocols employed pharmacological inhibitors in isolated, pressurized rat pulmonary arteries to examine the contribution of a variety of signaling moieties to enhanced vascular tone after chronic hypoxia. Superoxide generation in pulmonary arterial smooth muscle cells was assessed using the fluorescent indicator dihydroethidium. Indices of pulmonary hypertension were measured in rats treated with the EGFR inhibitor gefitinib. Inhibition of NADPH oxidase, Rac1 (Ras-related C3 botulinum toxin substrate 1), and EGFR abolished pressure-induced pulmonary arterial tone and endothelin-1 (ET-1)-dependent calcium sensitization and vasoconstriction after chronic hypoxia. Consistently, chronic hypoxia augmented ET-1-induced superoxide production through EGFR signaling, and rats treated chronically with gefitinib displayed reduced right ventricular pressure and diminished arterial remodeling. Src kinases were also activated by ET-1 after chronic hypoxia and contributed to enhanced basal arterial tone and vasoconstriction in response to ET-1. A role for matrix metalloproteinase 2 to mediate Src-dependent EGFR activation is further supported by our findings. Our studies support a novel role for an Src kinase-EGFR-NADPH oxidase signaling axis to mediate enhanced pulmonary vascular smooth muscle Ca2+ sensitization, vasoconstriction, and pulmonary hypertension after chronic hypoxia.


Assuntos
Receptores ErbB/metabolismo , Hipóxia/tratamento farmacológico , Pulmão/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacocinética , Quinases da Família src/metabolismo , Animais , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Pulmão/metabolismo , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley
7.
J Appl Physiol (1985) ; 127(2): 393-407, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31169471

RESUMO

Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels that contribute to cellular excitability. We previously reported that ASIC1 in pulmonary artery smooth muscle cells (PASMC) contribute to pulmonary vasoreactivity and vascular remodeling during the development of chronic hypoxia (CH)-induced pulmonary hypertension. However, the roles of ASIC2 and ASIC3 in regulation of pulmonary vasoreactivity and the development of CH-induced pulmonary hypertension are unknown. We tested the hypothesis that ASIC2 and ASIC3 contribute to increased pulmonary vasoreactivity and development of CH-induced pulmonary hypertension using ASIC2- and ASIC3-knockout (-/-) mice. In contrast to this hypothesis, we found that ASIC2-/- mice exhibit enhanced CH-induced pulmonary hypertension compared with WT and ASIC3-/- mice. This response was not associated with a change in ventilatory sensitivity or systemic cardiovascular function but was instead associated with direct changes in pulmonary vascular reactivity and pulmonary arterial morphology in ASIC2-/- mice. This increase in reactivity correlated with enhanced pulmonary arterial basal tone, elevated basal PASMC [Ca2+] and store-operated calcium entry (SOCE) in PASMC from ASIC2-/- mice. This increase in PASMC [Ca2+] and vasoreactivity was dependent on ASIC1-mediated Ca2+ influx but was not contingent upon an increase in ASIC1 mRNA or protein expression in PASMC from ASIC2-/- mice. Together, the results from this study demonstrate an important role for ASIC2 to regulate pulmonary vascular reactivity and for ASIC2 to modulate the development of CH-induced pulmonary hypertension. These data further suggest that loss of ASIC2 enhances the contribution of ASIC1 to overall pulmonary vascular reactivity.NEW & NOTEWORTHY This study demonstrates that loss of ASIC2 leads to increased baseline pulmonary vascular resistance, enhanced responses to a variety of vasoconstrictor stimuli, and greater development of hypoxic pulmonary hypertension. Furthermore, these results suggest that loss of ASIC2 enhances the contribution of ASIC1 to pulmonary vascular reactivity.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Resistência Vascular/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular/fisiologia , Vasoconstrição/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 314(5): H1011-H1021, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373038

RESUMO

Chronic hypoxia (CH) augments basal and endothelin-1 (ET-1)-induced pulmonary vasoconstrictor reactivity through reactive oxygen species (ROS) generation and RhoA/Rho kinase (ROCK)-dependent myofilament Ca2+ sensitization. Because ROCK promotes actin polymerization and the actin cytoskeleton regulates smooth muscle tension, we hypothesized that actin polymerization is required for enhanced basal and ET-1-dependent vasoconstriction after CH. To test this hypothesis, both end points were monitored in pressurized, endothelium-disrupted pulmonary arteries (fourth-fifth order) from control and CH (4 wk at 0.5 atm) rats. The actin polymerization inhibitors cytochalasin and latrunculin attenuated both basal and ET-1-induced vasoconstriction only in CH vessels. To test whether CH directly alters the arterial actin profile, we measured filamentous actin (F-actin)-to-globular actin (G-actin) ratios by fluorescent labeling of F-actin and G-actin in fixed pulmonary arteries and actin sedimentation assays using homogenized pulmonary artery lysates. We observed no difference in actin polymerization between groups under baseline conditions, but ET-1 enhanced actin polymerization in pulmonary arteries from CH rats. This response was blunted by the ROS scavenger tiron, the ROCK inhibitor fasudil, and the mDia (RhoA effector) inhibitor small-molecule inhibitor of formin homology domain 2. Immunoblot analysis revealed an effect of CH to increase both phosphorylated (inactive) and total levels of the actin disassembly factor cofilin but not phosphorylated cofilin-to-total cofilin ratios. We conclude that actin polymerization contributes to increased basal pulmonary arterial constriction and ET-1-induced vasoconstrictor reactivity after CH in a ROS- and ROCK-dependent manner. Our results further suggest that enhanced ET-1-mediated actin polymerization after CH is dependent on mDia but independent of changes in the phosphorylated cofilin-to-total cofilin ratio. NEW & NOTEWORTHY This research is the first to demonstrate a role for actin polymerization in chronic hypoxia-induced basal pulmonary arterial constriction and enhanced agonist-induced vasoconstrictor activity. These results suggest that a reactive oxygen species-Rho kinase-actin polymerization signaling pathway mediates this response and may provide a mechanistic basis for the vasoconstrictor component of pulmonary hypertension.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Artéria Pulmonar/metabolismo , Remodelação Vascular , Vasoconstrição , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/patologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Endotelina-1/farmacologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/metabolismo , Hipóxia/patologia , Hipóxia/fisiopatologia , Masculino , Estresse Oxidativo , Fosforilação , Polimerização , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 313(4): H828-H838, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733445

RESUMO

Augmented vasoconstrictor reactivity is thought to play an important role in the development of chronic hypoxia (CH)-induced neonatal pulmonary hypertension. However, whether this response to CH results from pulmonary endothelial dysfunction and reduced nitric oxide (NO)-mediated vasodilation is not well understood. We hypothesized that neonatal CH enhances basal tone and pulmonary vasoconstrictor sensitivity by limiting NO-dependent pulmonary vasodilation. To test this hypothesis, we assessed the effects of the NO synthase (NOS) inhibitor Nω-nitro-l-arginine (l-NNA) on baseline pulmonary vascular resistance (PVR) and vasoconstrictor sensitivity to the thromboxane mimetic U-46619 in saline-perfused lungs (in situ) from 2-wk-old control and CH (12-day exposure, 0.5 atm) Sprague-Dawley rats. Basal tone was defined as that reversed by exogenous NO (spermine NONOate). CH neonates displayed elevated right ventricular systolic pressure (in vivo) and right ventricular hypertrophy, indicative of pulmonary hypertension. Perfused lungs from CH rats demonstrated greater baseline PVR, basal tone, and U-46619-mediated vasoconstriction compared with control rats in the absence of l-NNA. l-NNA markedly increased baseline PVR and reactivity to U-46619 in lungs from CH neonates, further augmenting vasoconstrictor sensitivity compared with control lungs. Exposure to CH also enhanced NO-dependent vasodilation to arginine vasopressin, pulmonary expression of NOS III [endothelial NOS (eNOS)], and eNOS phosphorylation at activation residue Ser1177 However, CH did not alter lung nitrotyrosine levels, a posttranslational modification reflecting [Formula: see text] scavenging of NO. We conclude that, in contrast to our hypothesis, enhanced basal tone and agonist-induced vasoconstriction after neonatal CH is limited by increased NO-dependent pulmonary vasodilation resulting from greater eNOS expression and phosphorylation at activation residue Ser1177NEW & NOTEWORTHY This research is the first to demonstrate enhanced nitric oxide-dependent vasodilation that limits increased vasoconstrictor reactivity in neonatal pulmonary hypertension. These results suggest that augmented vasoconstriction in this setting reflects changes in smooth muscle reactivity rather than a reduction in nitric oxide-dependent pulmonary vasodilation.


Assuntos
Hipóxia/fisiopatologia , Óxido Nítrico , Circulação Pulmonar , Vasoconstritores/farmacologia , Vasodilatação , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Animais Recém-Nascidos , Doença Crônica , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Nitroarginina/farmacologia , Ratos , Ratos Sprague-Dawley , Tirosina/análogos & derivados , Tirosina/metabolismo , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...