Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6664, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333305

RESUMO

Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.


Assuntos
Proteínas de Ciclo Celular , Microcefalia , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microcefalia/genética , Reparo do DNA/genética , Cromossomos/metabolismo , Instabilidade Genômica , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
2.
EMBO J ; 41(9): e110145, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35349166

RESUMO

Conjugation of ubiquitin (Ub) to numerous substrate proteins regulates virtually all cellular processes. Eight distinct ubiquitin polymer linkages specifying different functional outcomes are generated in cells. However, the roles of some atypical poly-ubiquitin topologies, in particular linkages via lysine 27 (K27), remain poorly understood due to a lack of tools for their specific detection and manipulation. Here, we adapted a cell-based ubiquitin replacement strategy to enable selective and conditional abrogation of K27-linked ubiquitylation, revealing that this ubiquitin linkage type is essential for proliferation of human cells. We demonstrate that K27-linked ubiquitylation is predominantly a nuclear modification whose ablation deregulates nuclear ubiquitylation dynamics and impairs cell cycle progression in an epistatic manner with inactivation of the ATPase p97/VCP. Moreover, we show that a p97-proteasome pathway model substrate (Ub(G76V)-GFP) is directly modified by K27-linked ubiquitylation, and that disabling the formation of K27-linked ubiquitin signals or blocking their decoding via overexpression of the K27 linkage-specific binder UCHL3 impedes Ub(G76V)-GFP turnover at the level of p97 function. Our findings suggest a critical role of K27-linked ubiquitylation in supporting cell fitness by facilitating p97-dependent processing of ubiquitylated nuclear proteins.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Núcleo Celular/metabolismo , Proliferação de Células , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
3.
Breast Cancer Res ; 21(1): 43, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898150

RESUMO

BACKGROUND: The oncogenic receptor tyrosine kinase (RTK) ERBB2 is known to dimerize with other EGFR family members, particularly ERBB3, through which it potently activates PI3K signalling. Antibody-mediated inhibition of this ERBB2/ERBB3/PI3K axis has been a cornerstone of treatment for ERBB2-amplified breast cancer patients for two decades. However, the lack of response and the rapid onset of relapse in many patients now question the assumption that the ERBB2/ERBB3 heterodimer is the sole relevant effector target of these therapies. METHODS: Through a systematic protein-protein interaction screen, we have identified and validated alternative RTKs that interact with ERBB2. Using quantitative readouts of signalling pathway activation and cell proliferation, we have examined their influence upon the mechanism of trastuzumab- and pertuzumab-mediated inhibition of cell growth in ERBB2-amplified breast cancer cell lines and a patient-derived xenograft model. RESULTS: We now demonstrate that inactivation of ERBB3/PI3K by these therapeutic antibodies is insufficient to inhibit the growth of ERBB2-amplified breast cancer cells. Instead, we show extensive promiscuity between ERBB2 and an array of RTKs from outside of the EGFR family. Paradoxically, pertuzumab also acts as an artificial ligand to promote ERBB2 activation and ERK signalling, through allosteric activation by a subset of these non-canonical RTKs. However, this unexpected activation mechanism also increases the sensitivity of the receptor network to the ERBB2 kinase inhibitor lapatinib, which in combination with pertuzumab, displays a synergistic effect in single-agent resistant cell lines and PDX models. CONCLUSIONS: The interaction of ERBB2 with a number of non-canonical RTKs activates a compensatory signalling response following treatment with pertuzumab, although a counter-intuitive combination of ERBB2 antibody therapy and a kinase inhibitor can overcome this innate therapeutic resistance.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Fosforilação , Receptor ErbB-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Res ; 17(4): 949-962, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30647103

RESUMO

Prostate cancer cells exhibit altered cellular metabolism but, notably, not the hallmarks of Warburg metabolism. Prostate cancer cells exhibit increased de novo synthesis of fatty acids (FA); however, little is known about how extracellular FAs, such as those in the circulation, may support prostate cancer progression. Here, we show that increasing FA availability increased intracellular triacylglycerol content in cultured patient-derived tumor explants, LNCaP and C4-2B spheroids, a range of prostate cancer cells (LNCaP, C4-2B, 22Rv1, PC-3), and prostate epithelial cells (PNT1). Extracellular FAs are the major source (∼83%) of carbons to the total lipid pool in all cell lines, compared with glucose (∼13%) and glutamine (∼4%), and FA oxidation rates are greater in prostate cancer cells compared with PNT1 cells, which preferentially partitioned extracellular FAs into triacylglycerols. Because of the higher rates of FA oxidation in C4-2B cells, cells remained viable when challenged by the addition of palmitate to culture media and inhibition of mitochondrial FA oxidation sensitized C4-2B cells to palmitate-induced apoptosis. Whereas in PC-3 cells, palmitate induced apoptosis, which was prevented by pretreatment of PC-3 cells with FAs, and this protective effect required DGAT-1-mediated triacylglycerol synthesis. These outcomes highlight for the first-time heterogeneity of lipid metabolism in prostate cancer cells and the potential influence that obesity-associated dyslipidemia or host circulating has on prostate cancer progression. IMPLICATIONS: Extracellular-derived FAs are primary building blocks for complex lipids and heterogeneity in FA metabolism exists in prostate cancer that can influence tumor cell behavior.


Assuntos
Ácidos Graxos/metabolismo , Lipídeos/biossíntese , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Líquido Extracelular/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Palmitatos/metabolismo , Triglicerídeos/metabolismo
5.
Mol Oncol ; 12(9): 1623-1638, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099850

RESUMO

Breast cancer (BrCa) metabolism is geared toward biomass synthesis and maintenance of reductive capacity. Changes in glucose and glutamine metabolism in BrCa have been widely reported, yet the contribution of fatty acids (FAs) in BrCa biology remains to be determined. We recently reported that adipocyte coculture alters MCF-7 and MDA-MB-231 cell metabolism and promotes proliferation and migration. Since adipocytes are FA-rich, and these FAs are transferred to BrCa cells, we sought to elucidate the FA metabolism of BrCa cells and their response to FA-rich environments. MCF-7 and MDA-MB-231 cells incubated in serum-containing media supplemented with FAs accumulate extracellular FAs as intracellular triacylglycerols (TAG) in a dose-dependent manner, with MDA-MB-231 cells accumulating more TAG. The differences in TAG levels were a consequence of distinct differences in intracellular partitioning of FAs, and not due to differences in the rate of FA uptake. Specifically, MCF-7 cells preferentially partition FAs into mitochondrial oxidation, whereas MDA-MB-231 cells partition FAs into TAG synthesis. These differences in intracellular FA handling underpin differences in the sensitivity to palmitate-induced lipotoxicity, with MDA-MB-231 cells being highly sensitive, whereas MCF-7 cells are partially protected. The attenuation of palmitate-induced lipotoxicity in MCF-7 cells was reversed by inhibition of FA oxidation. Pretreatment of MDA-MB-231 cells with FAs increased TAG synthesis and reduced palmitate-induced apoptosis. Our results provide novel insight into the potential influences of obesity on BrCa biology, highlighting distinct differences in FA metabolism in MCF-7 and MDA-MB-231 cells and how lipid-rich environments modulate these effects.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Ácidos Graxos/metabolismo , Obesidade/metabolismo , Palmitatos/farmacologia , Triglicerídeos/biossíntese , Neoplasias da Mama/etiologia , Carnitina O-Palmitoiltransferase/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Lipase/biossíntese , Lipólise , Células MCF-7 , Mitocôndrias/metabolismo , Obesidade/complicações , Ácido Oleico/farmacologia , Fosforilação Oxidativa , Transdução de Sinais/efeitos dos fármacos
6.
J Vis Exp ; (136)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29985350

RESUMO

The assembly of protein complexes is a central mechanism underlying the regulation of many cell signaling pathways. A major focus of biomedical research is deciphering how these dynamic protein complexes act to integrate signals from multiple sources in order to direct a specific biological response, and how this becomes deregulated in many disease settings. Despite the importance of this key biochemical mechanism, there is a lack of experimental techniques that can facilitate the specific and sensitive deconvolution of these multi-molecular signaling complexes. Here this shortcoming is addressed through the combination of a protein complementation assay with a conformation-specific nanobody, which we have termed Bimolecular Complementation Affinity Purification (BiCAP). This novel technique facilitates the specific isolation and downstream proteomic characterization of any pair of interacting proteins, to the exclusion of un-complexed individual proteins and complexes formed with competing binding partners. The BiCAP technique is adaptable to a wide array of downstream experimental assays, and the high degree of specificity afforded by this technique allows more nuanced investigations into the mechanics of protein complex assembly than is currently possible using standard affinity purification techniques.


Assuntos
Fluorescência , Complexos Multiproteicos/química , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteômica/métodos , Humanos , Proteínas/metabolismo , Transdução de Sinais
7.
Cell Rep ; 23(11): 3312-3326, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898401

RESUMO

Application of advanced intravital imaging facilitates dynamic monitoring of pathway activity upon therapeutic inhibition. Here, we assess resistance to therapeutic inhibition of the PI3K pathway within the hypoxic microenvironment of pancreatic ductal adenocarcinoma (PDAC) and identify a phenomenon whereby pronounced hypoxia-induced resistance is observed for three clinically relevant inhibitors. To address this clinical problem, we have mapped tumor hypoxia by both immunofluorescence and phosphorescence lifetime imaging of oxygen-sensitive nanoparticles and demonstrate that these hypoxic regions move transiently around the tumor. To overlay this microenvironmental information with drug response, we applied a FRET biosensor for Akt activity, which is a key effector of the PI3K pathway. Performing dual intravital imaging of drug response in different tumor compartments, we demonstrate an improved drug response to a combination therapy using the dual mTORC1/2 inhibitor AZD2014 with the hypoxia-activated pro-drug TH-302.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Benzamidas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Hipóxia , Microscopia Intravital/métodos , Camundongos , Camundongos Endogâmicos BALB C , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Nanopartículas/química , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Mostardas de Fosforamida/farmacologia , Mostardas de Fosforamida/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo , Microambiente Tumoral
8.
Mol Biol Cell ; 29(13): 1542-1554, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29742019

RESUMO

Primary cilia are crucial for signal transduction in a variety of pathways, including hedgehog and Wnt. Disruption of primary cilia formation (ciliogenesis) is linked to numerous developmental disorders (known as ciliopathies) and diseases, including cancer. The ubiquitin-proteasome system (UPS) component UBR5 was previously identified as a putative positive regulator of ciliogenesis in a functional genomics screen. UBR5 is an E3 ubiquitin ligase that is frequently deregulated in tumors, but its biological role in cancer is largely uncharacterized, partly due to a lack of understanding of interacting proteins and pathways. We validated the effect of UBR5 depletion on primary cilia formation using a robust model of ciliogenesis, and identified CSPP1, a centrosomal and ciliary protein required for cilia formation, as a UBR5-interacting protein. We show that UBR5 ubiquitylates CSPP1, and that UBR5 is required for cytoplasmic organization of CSPP1-comprising centriolar satellites in centrosomal periphery, suggesting that UBR5-mediated ubiquitylation of CSPP1 or associated centriolar satellite constituents is one underlying requirement for cilia expression. Hence, we have established a key role for UBR5 in ciliogenesis that may have important implications in understanding cancer pathophysiology.


Assuntos
Centríolos/metabolismo , Cílios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Biópsia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Poliubiquitina/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
9.
Cancer Metab ; 5: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28163917

RESUMO

BACKGROUND: Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited. METHODS: We deployed an integrated approach combining genomics, metabolomics, and phenotypic analysis on a unique cohort of patient-derived pancreatic cancer cell lines (PDCLs). Genome analysis was performed via targeted sequencing of the mitochondrial genome (mtDNA) and nuclear genes encoding mitochondrial components and metabolic genes. Phenotypic characterization of PDCLs included measurement of cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a Seahorse XF extracellular flux analyser, targeted metabolomics and pathway profiling, and radiolabelled glutamine tracing. RESULTS: We identified 24 somatic mutations in the mtDNA of 12 patient-derived pancreatic cancer cell lines (PDCLs). A further 18 mutations were identified in a targeted study of ~1000 nuclear genes important for mitochondrial function and metabolism. Comparison with reference datasets indicated a strong selection bias for non-synonymous mutants with predicted functional effects. Phenotypic analysis showed metabolic changes consistent with mitochondrial dysfunction, including reduced oxygen consumption and increased glycolysis. Metabolomics and radiolabeled substrate tracing indicated the initiation of reductive glutamine metabolism and lipid synthesis in tumours. CONCLUSIONS: The heterogeneous genomic landscape of pancreatic tumours may converge on a common metabolic phenotype, with individual tumours adapting to increased anabolic demands via different genetic mechanisms. Targeting resulting metabolic phenotypes may be a productive therapeutic strategy.

10.
Cancer Metab ; 5: 1, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28101337

RESUMO

BACKGROUND: Obesity is associated with increased recurrence and reduced survival of breast cancer. Adipocytes constitute a significant component of breast tissue, yet their role in provisioning metabolic substrates to support breast cancer progression is poorly understood. RESULTS: Here, we show that co-culture of breast cancer cells with adipocytes revealed cancer cell-stimulated depletion of adipocyte triacylglycerol. Adipocyte-derived free fatty acids were transferred to breast cancer cells, driving fatty acid metabolism via increased CPT1A and electron transport chain complex protein levels, resulting in increased proliferation and migration. Notably, fatty acid transfer to breast cancer cells was enhanced from "obese" adipocytes, concomitant with increased stimulation of cancer cell proliferation and migration. This adipocyte-stimulated breast cancer cell proliferation was dependent on lipolytic processes since HSL/ATGL knockdown attenuated cancer cell responses. CONCLUSIONS: These findings highlight a novel and potentially important role for adipocyte lipolysis in the provision of metabolic substrates to breast cancer cells, thereby supporting cancer progression.

11.
Biochem Soc Trans ; 44(5): 1265-1271, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911708

RESUMO

Primary cilia form at the surface of most vertebrate cell types, where they are essential signalling antennae for signal transduction pathways important for development and cancer, including Hedgehog. The importance of primary cilia in development is clearly demonstrated by numerous disorders (known as ciliopathies) associated with disrupted cilia formation (ciliogenesis). Recent advances describing functional regulators of the primary cilium highlight an emerging role for the ubiquitin-proteasome system (UPS) as a key regulator of ciliogenesis. Although there are well-documented examples of E3 ubiquitin ligases and deubiquitases in the regulation of cilia proteins, many putative components remain unvalidated. This review explores current understanding of how the UPS influences primary cilia formation, and also how recent screen data have identified more putative regulators of the UPS. Emerging research has identified many promising leads in the search for regulators of this important organelle and may identify potential novel therapeutic targets for intervention in cancer and other disease contexts.


Assuntos
Cílios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Animais , Humanos , Modelos Biológicos , Ligação Proteica , Proteoma/metabolismo , Ubiquitinação
12.
Sci Signal ; 9(436): ra69, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405979

RESUMO

The dynamic assembly of multiprotein complexes is a central mechanism of many cell signaling pathways. This process is key to maintaining the spatiotemporal specificity required for an accurate, yet adaptive, response to rapidly changing cellular conditions. We describe a technique for the specific isolation and downstream proteomic characterization of any two interacting proteins, to the exclusion of their individual moieties and competing binding partners. We termed the approach bimolecular complementation affinity purification (BiCAP) because it combines the use of conformation-specific nanobodies with a protein-fragment complementation assay with affinity purification. Using BiCAP, we characterized the specific interactome of the epidermal growth factor receptor (EGFR) family member ERBB2 when in the form of a homodimer or when in the form of a heterodimer with either EGFR or ERBB3. We identified dimer-specific interaction patterns for key adaptor proteins and identified a number of previously unknown interacting partners. Functional analysis for one of these newly identified partners revealed a noncanonical mechanism of extracellular signal-regulated kinase (ERK) activation that is specific to the ERBB2:ERBB3 heterodimer and acts through the adaptor protein FAM59A in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Receptores ErbB , Sistema de Sinalização das MAP Quinases , Multimerização Proteica , Receptor ErbB-2 , Receptor ErbB-3 , Neoplasias da Mama/patologia , Receptores ErbB/isolamento & purificação , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Células MCF-7 , Receptor ErbB-2/isolamento & purificação , Receptor ErbB-2/metabolismo , Receptor ErbB-3/isolamento & purificação , Receptor ErbB-3/metabolismo
13.
Mol Cancer Res ; 13(12): 1523-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26464214

RESUMO

The Ubiquitin-Proteasome System (UPS) is an important regulator of cell signaling and proteostasis, which are essential to a variety of cellular processes. The UPS is disrupted in many diseases including cancer, and targeting the UPS for cancer therapy is gaining wide interest. E3 ubiquitin ligases occupy a key position in the hierarchical UPS enzymatic cascade, largely responsible for determining substrate specificity and ubiquitin (Ub) chain topology. The E3 ligase UBR5 (aka EDD1) is emerging as a key regulator of the UPS in cancer and development. UBR5 expression is deregulated in many cancer types and UBR5 is frequently mutated in mantle cell lymphoma. UBR5 is highly conserved in metazoans, has unique structural features, and has been implicated in regulation of DNA damage response, metabolism, transcription, and apoptosis. Hence, UBR5 is a key regulator of cell signaling relevant to broad areas of cancer biology. However, the mechanism by which UBR5 may contribute to tumor initiation and progression remains poorly defined. This review synthesizes emerging insights from genetics, biochemistry, and cell biology to inform our understanding of UBR5 in cancer. These molecular insights indicate a role for UBR5 in integrating/coordinating various cellular signaling pathways. Finally, we discuss outstanding questions in UBR5 biology and highlight the need to systematically characterize substrates, and address limitations in current animal models, to better define the role of UBR5 in cancer.


Assuntos
Neoplasias/enzimologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases/química
14.
PLoS One ; 10(6): e0130136, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083412

RESUMO

SerpinB2 (PAI-2), a member of the clade B family of serine protease inhibitors, is one of the most upregulated proteins following cellular stress. Originally described as an inhibitor of urokinase plasminogen activator, its predominant cytoplasmic localisation suggests an intracellular function. SerpinB2 has been reported to display cytoprotective properties in neurons and to interact with intracellular proteins including components of the ubiquitin-proteasome system (UPS). In the current study we explored the potential role of SerpinB2 as a modulator of proteotoxic stress. Initially, we transiently transfected wild-type SerpinB2 and SerpinB2-/- murine embryonic fibroblasts (MEFs) with Huntingtin exon1-polyglutamine (fused C-terminally to mCherry). Inclusion body formation as result of Huntingtin aggregation was evident in the SerpinB2 expressing cells but significantly impaired in the SerpinB2-/- cells, the latter concomitant with loss in cell viability. Importantly, recovery of the wild-type phenotype and cell viability was rescued by retroviral transduction of SerpinB2 expression. SerpinB2 modestly attenuated Huntingtin and amyloid beta fibril formation in vitro and was able to bind preferentially to misfolded proteins. Given the modest chaperone-like activity of SerpinB2 we tested the ability of SerpinB2 to modulate UPS and autophagy activity using a GFP reporter system and autophagy reporter, respectively. Activity of the UPS was reduced and autophagy was dysregulated in SerpinB2-/- compared to wild-type MEFs. Moreover, we observed a non-covalent interaction between ubiquitin and SerpinB2 in cells using GFP-pulldown assays and bimolecular fluorescence complementation. We conclude that SerpinB2 plays an important role in proteostasis as its loss leads to a proteotoxic phenotype associated with an inability to compartmentalize aggregating proteins and a reduced capacity of the UPS.


Assuntos
Citoproteção/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Peptídeos beta-Amiloides/química , Animais , Éxons/genética , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Camundongos , Peptídeos/metabolismo , Gravidez , Agregados Proteicos , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina/metabolismo
15.
Genes Cells ; 20(1): 1-10, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25307957

RESUMO

The use of third-generation lentiviral vectors is now commonplace in most areas of basic biology. These systems provide a fast, efficient means for modulating gene expression, but experimental design needs to be carefully considered to minimize potential artefacts arising from off-target effects and other confounding factors. This review offers a starting point for those new to lentiviral-based vector systems, addressing the main issues involved with the use of lentiviral systems in vitro and outlines considerations which should be taken into account during experimental design. Factors such as selecting an appropriate system and controls, and practical titration of viral transduction are important considerations for experimental design. We also briefly describe some of the more recent advances in genome editing technology. TALENs and CRISPRs offer an alternative to lentivirus, providing endogenous gene editing with reduced off-target effects often at the expense of efficiency.


Assuntos
Vetores Genéticos , Lentivirus/genética , Transformação Genética , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desoxirribonucleases/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Marcação de Genes/métodos , Mamíferos , Regiões Promotoras Genéticas , Projetos de Pesquisa , Transdução Genética/métodos , Dedos de Zinco
16.
PLoS One ; 7(12): e51762, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251618

RESUMO

Mutations in the SERPINA1 gene can cause deficiency in the circulating serine protease inhibitor α(1)-Antitrypsin (α(1)AT). α(1)AT deficiency is the major contributor to pulmonary emphysema and liver disease in persons of European ancestry, with a prevalence of 1 in 2500 in the USA. We present the discovery and characterization of a novel SERPINA1 mutant from an asymptomatic Middle Eastern male with circulating α(1)AT deficiency. This 49 base pair deletion mutation (T379Δ), originally mistyped by IEF, causes a frame-shift replacement of the last sixteen α(1)AT residues and adds an extra twenty-four residues. Functional analysis showed that the mutant protein is not secreted and prone to intracellular aggregation.


Assuntos
Mutação/genética , Deficiência de alfa 1-Antitripsina/sangue , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/sangue , alfa 1-Antitripsina/genética , Sequência de Aminoácidos , Sequência de Bases , Células HEK293 , Humanos , Masculino , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , alfa 1-Antitripsina/química
17.
Cancer Res ; 71(11): 4002-14, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632555

RESUMO

Hedgehog (Hh) signaling plays an important role in several malignancies but its clinical significance in breast cancer is unclear. In a cohort of 279 patients with invasive ductal carcinoma of the breast, expression of Hh ligand was significantly associated with increased risk of metastasis, breast cancer-specific death, and a basal-like phenotype. A paracrine signature, encompassing high epithelial Hh ligand and high stromal Gli1, was an independent predictor for overall survival in multivariate analysis. In 2 independent histological progression series (n = 301), Hh expression increased with atypia. Hh ligand overexpression in a mouse model of basal breast cancer increased growth, induced a poorly differentiated phenotype, accelerated metastasis, and reduced survival. A stromal requirement for these effects was supported by the lack of similar Hh-mediated changes in vitro, and by stromal-specific expression of Hh target genes in vivo. Furthermore, inhibition of Hh ligand with a monoclonal antibody (5E1) inhibited tumor growth and metastasis. These data suggest that epithelial-stromal Hh signaling, driven by ligand expression in carcinoma cells, promotes breast cancer growth and metastasis. Blockade of Hh signaling to peritumoral stromal cells may represent a novel therapeutic approach in some basal-like breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas Hedgehog/biossíntese , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Prognóstico , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...