Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
iScience ; 27(4): 109458, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38571760

RESUMO

Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.

2.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370617

RESUMO

The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its impact in the absence of such rare mutations is poorly understood. To reveal complex patient subtypes and putative regulators of pathogenic splicing in Acute Myeloid Leukemia (AML), we developed a new approach called OncoSplice. Among diverse new subtypes, OncoSplice identified a biphasic poor prognosis signature that partially phenocopies U2AF1-mutant splicing, impacting thousands of genes in over 40% of adult and pediatric AML cases. U2AF1-like splicing co-opted a healthy circadian splicing program, was stable over time and induced a leukemia stem cell (LSC) program. Pharmacological inhibition of the implicated U2AF1-like splicing regulator, PRMT5, rescued leukemia mis-splicing and inhibited leukemic cell growth. Genetic deletion of IRAK4, a common target of U2AF1-like and PRMT5 treated cells, blocked leukemia development in xenograft models and induced differentiation. These analyses reveal a new prognostic alternative-splicing mechanism in malignancy, independent of splicing-factor mutations.

3.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37790377

RESUMO

Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that, to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.

5.
Elife ; 112022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34984976

RESUMO

Protein arginine methyltransferases (PRMTs) are required for the regulation of RNA processing factors. Type I PRMT enzymes catalyze mono- and asymmetric dimethylation; Type II enzymes catalyze mono- and symmetric dimethylation. To understand the specific mechanisms of PRMT activity in splicing regulation, we inhibited Type I and II PRMTs and probed their transcriptomic consequences. Using the newly developed Splicing Kinetics and Transcript Elongation Rates by Sequencing (SKaTER-seq) method, analysis of co-transcriptional splicing demonstrated that PRMT inhibition resulted in altered splicing rates. Surprisingly, co-transcriptional splicing kinetics did not correlate with final changes in splicing of polyadenylated RNA. This was particularly true for retained introns (RI). By using actinomycin D to inhibit ongoing transcription, we determined that PRMTs post-transcriptionally regulate RI. Subsequent proteomic analysis of both PRMT-inhibited chromatin and chromatin-associated polyadenylated RNA identified altered binding of many proteins, including the Type I substrate, CHTOP, and the Type II substrate, SmB. Targeted mutagenesis of all methylarginine sites in SmD3, SmB, and SmD1 recapitulated splicing changes seen with Type II PRMT inhibition, without disrupting snRNP assembly. Similarly, mutagenesis of all methylarginine sites in CHTOP recapitulated the splicing changes seen with Type I PRMT inhibition. Examination of subcellular fractions further revealed that RI were enriched in the nucleoplasm and chromatin. Taken together, these data demonstrate that, through Sm and CHTOP arginine methylation, PRMTs regulate the post-transcriptional processing of nuclear, detained introns.


Assuntos
Regulação da Expressão Gênica , Íntrons/genética , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Fatores de Transcrição/genética , Proteínas Centrais de snRNP/genética , Linhagem Celular , Humanos , Metilação , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Centrais de snRNP/metabolismo
6.
iScience ; 24(9): 102971, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34505004

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze the post-translational monomethylation (Rme1), asymmetric (Rme2a), or symmetric (Rme2s) dimethylation of arginine. To determine the cellular consequences of type I (Rme2a) and II (Rme2s) PRMTs, we developed and integrated multiple approaches. First, we determined total cellular dimethylarginine levels, revealing that Rme2s was ∼3% of total Rme2 and that this percentage was dependent upon cell type and PRMT inhibition status. Second, we quantitatively characterized in vitro substrates of the major enzymes and expanded upon PRMT substrate recognition motifs. We also compiled our data with publicly available methylarginine-modified residues into a comprehensive database. Third, we inhibited type I and II PRMTs and performed proteomic and transcriptomic analyses to reveal their phenotypic consequences. These experiments revealed both overlapping and independent PRMT substrates and cellular functions. Overall, this study expands upon PRMT substrate diversity, the arginine methylome, and the complex interplay of type I and II PRMTs.

7.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 5): 194-198, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356520

RESUMO

Chromatin is the complex assembly of nucleic acids and proteins that makes up the physiological form of the eukaryotic genome. The nucleosome is the fundamental repeating unit of chromatin, and is composed of ∼147 bp of DNA wrapped around a histone octamer formed by two copies of each core histone: H2A, H2B, H3 and H4. Prior to nucleosome assembly, and during histone eviction, histones are typically assembled into soluble H2A/H2B dimers and H3/H4 dimers and tetramers. A multitude of factors interact with soluble histone dimers and tetramers, including chaperones, importins, histone-modifying enzymes and chromatin-remodeling enzymes. It is still unclear how many of these proteins recognize soluble histones; therefore, there is a need for new structural tools to study non-nucleosomal histones. Here, a single-chain, tailless Xenopus H2A/H2B dimer was created by directly fusing the C-terminus of H2B to the N-terminus of H2A. It is shown that this construct (termed scH2BH2A) is readily expressed in bacteria and can be purified under non-denaturing conditions. A 1.31 Šresolution crystal structure of scH2BH2A shows that it adopts a conformation that is nearly identical to that of nucleosomal H2A/H2B. This new tool is likely to facilitate future structural studies of many H2A/H2B-interacting proteins.


Assuntos
Histonas/química , Xenopus/metabolismo , Animais , Cristalografia por Raios X , Dimerização , Escherichia coli/metabolismo , Histonas/isolamento & purificação , Ligação de Hidrogênio , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Eletricidade Estática
8.
Biochemistry ; 59(39): 3696-3708, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32207970

RESUMO

Histone H3 arginine 2 (H3R2) is post-translationally modified in three different states by "writers" of the protein arginine methyltransferase (PRMT) family. H3R2 methylarginine isoforms include PRMT5-catalyzed monomethylation (me1) and symmetric dimethylation (me2s) and PRMT6-catalyzed me1 and asymmetric dimethylation (me2a). WD-40 repeat-containing protein 5 (WDR5) is an epigenetic "reader" protein that interacts with H3R2. Previous studies suggested that H3R2me2s specified a high-affinity interaction with WDR5. However, our prior biological data prompted the hypothesis that WDR5 may also interact with H3R2me1. Here, using highly accurate quantitative binding analysis combined with high-resolution crystal structures of WDR5 in complex with unmodified (me0) and me1/me2s l-arginine amino acids and in complex with the H3R2me1 peptide, we provide a rigorous biochemical study and address long-standing discrepancies of this important biological interaction. Despite modest structural differences at the binding interface, our study supports an interaction model regulated by a binary arginine methylation switch: H3R2me2a prevents interaction with WDR5, whereas H3R2me0, -me1, and -me2s are equally permissive.


Assuntos
Arginina/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Arginina/análise , Cristalografia por Raios X , Histonas/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Metilação , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas
9.
Cell Rep ; 28(8): 1993-2003.e5, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433977

RESUMO

The Retinoid inducible nuclear factor (Rinf), also known as CXXC5, is a nuclear protein, but its functions in the context of the chromatin are poorly defined. We find that in mouse embryonic stem cells (mESCs), Rinf binds to the chromatin and is enriched at promoters and enhancers of Tet1, Tet2, and pluripotency genes. The Rinf-bound regions show significant overlapping occupancy of pluripotency factors Nanog, Oct4, and Sox2, as well as Tet1 and Tet2. We found that Rinf forms a complex with Nanog, Oct4, Tet1, and Tet2 and facilitates their proper recruitment to regulatory regions of pluripotency and Tet genes in ESCs to positively regulate their transcription. Rinf deficiency in ESCs reduces expression of Rinf target genes, including several pluripotency factors and Tet enzymes, and causes aberrant differentiation. Together, our findings establish Rinf as a regulator of the pluripotency network genes and Tet enzymes in ESCs.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Autorrenovação Celular/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/deficiência , Dioxigenases , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Camundongos , Camundongos SCID , Proteína Homeobox Nanog/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/deficiência , Transcrição Gênica
10.
Cell Mol Life Sci ; 76(15): 2871-2872, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31177294

RESUMO

Protein post-translational modifications (PTMs) have long been a topic of intensive investigation. Covalent additions to the 20 genetically encoded amino acids can alter protein interactions and can even change enzymatic function. In eukarya, PTMs can amplify both the complexity and functional paradigms of the cellular environment. Therefore, PTMs have been of substantial research interest, both for understanding fundamental mechanisms and to provide insight into drug design. Indeed, targeting proteins involved in writing, reading, and erasing PTMs important for human pathologies are some of the most fruitful avenues of drug discovery. In this multi-author review, we explore exciting new work on lysine and arginine methylation, molecular and structural understanding of some of the lysine and arginine methyltransferases (KMTs and PRMTs, respectively), novel insights into nucleic acid methylation, and how the enzymes responsible for writing these PTMs and readers responsible for recognizing these PTMs could be drugged. Here, we introduce the background and the topics covered in this issue.


Assuntos
Processamento de Proteína Pós-Traducional , Arginina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo
11.
Cell Mol Life Sci ; 76(15): 2933-2956, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31101937

RESUMO

Arginine methylation is a ubiquitous post-translational modification. Three predominant types of arginine-guanidino methylation occur in Eukarya: mono (Rme1/MMA), symmetric (Rme2s/SDMA), and asymmetric (Rme2a/ADMA). Arginine methylation frequently occurs at sites of protein-protein and protein-nucleic acid interactions, providing specificity for binding partners and stabilization of important biological interactions in diverse cellular processes. Each methylarginine isoform-catalyzed by members of the protein arginine methyltransferase family, Type I (PRMT1-4,6,8) and Type II (PRMT5,9)-has unique downstream consequences. Methylarginines are found in ordered domains, domains of low complexity, and in intrinsically disordered regions of proteins-the latter two of which are intimately connected with biological liquid-liquid phase separation. This review highlights discoveries illuminating how arginine methylation affects genome integrity, gene transcription, mRNA splicing and mRNP biology, protein translation and stability, and phase separation. As more proteins and processes are found to be regulated by arginine methylation, its importance for understanding cellular physiology will continue to grow.


Assuntos
Arginina/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Actinas/metabolismo , Cromatina/metabolismo , Reparo do DNA , Histonas/metabolismo , Humanos , Metilação , Splicing de RNA , Ribonucleoproteínas/metabolismo
12.
Cold Spring Harb Protoc ; 2019(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475998

RESUMO

Xenopus laevis development is marked by accelerated cell division solely supported by the proteins maternally deposited in the egg. Oocytes mature to eggs with concomitant transcriptional silencing. The unique maternal chromatin state contributing to this silencing and subsequent zygotic activation is likely established by histone posttranslational modifications and histone variants. Therefore, tools for understanding the nature and function of maternal and embryonic histones are essential to deciphering mechanisms of regulation of development, chromatin assembly, and transcription. Here we describe protocols for isolating pronuclear sperm chromatin from Xenopus egg extracts and hydroxyapatite-based histone purification from this chromatin. The histones purified through this method can be directly assembled into chromatin through in vitro assembly reactions, providing a unique opportunity to biochemically dissect the effect of histone variants, histone modifications, and other factors in chromatin replication and assembly. We also describe how to isolate chromatin from staged embryos and analyze the proteins to reveal dynamic developmental histone modifications. Finally, we present protocols to measure chromatin assembly in extracts, including supercoiling and micrococcal nuclease assays. Using these approaches, analysis of maternal and zygotic histone posttranslational modifications concomitant with cell-cycle and developmental transitions can be tested.


Assuntos
Cromatina/isolamento & purificação , Misturas Complexas/isolamento & purificação , Embrião não Mamífero/química , Histocitoquímica/métodos , Histonas/isolamento & purificação , Xenopus laevis , Zigoto/química , Animais , Feminino , Masculino , Espermatozoides/química
13.
Cell Rep ; 25(3): 663-676.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332646

RESUMO

A hallmark of aging is a decline in metabolic homeostasis, which is attenuated by dietary restriction (DR). However, the interaction of aging and DR with the metabolome is not well understood. We report that DR is a stronger modulator of the rat metabolome than age in plasma and tissues. A comparative metabolomic screen in rodents and humans identified circulating sarcosine as being similarly reduced with aging and increased by DR, while sarcosine is also elevated in long-lived Ames dwarf mice. Pathway analysis in aged sarcosine-replete rats identify this biogenic amine as an integral node in the metabolome network. Finally, we show that sarcosine can activate autophagy in cultured cells and enhances autophagic flux in vivo, suggesting a potential role in autophagy induction by DR. Thus, these data identify circulating sarcosine as a biomarker of aging and DR in mammalians and may contribute to age-related alterations in the metabolome and in proteostasis.


Assuntos
Envelhecimento/fisiologia , Biomarcadores/análise , Restrição Calórica , Longevidade , Metaboloma , Sarcosina/sangue , Adulto , Idoso , Animais , Estudos de Coortes , Feminino , Homeostase , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344
14.
Nat Commun ; 8(1): 2215, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263320

RESUMO

Nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowed us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.


Assuntos
Histonas/metabolismo , Nucleoplasminas/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Cromatina , Cristalografia por Raios X , Chaperonas de Histonas/metabolismo , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Nucleossomos/metabolismo , Ligação Proteica , Espalhamento a Baixo Ângulo , Xenopus laevis
15.
J Mol Biol ; 429(16): 2401-2426, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28610839

RESUMO

Chromatin is the complex of eukaryotic DNA and proteins required for the efficient compaction of the nearly 2-meter-long human genome into a roughly 10-micron-diameter cell nucleus. The fundamental repeating unit of chromatin is the nucleosome: 147bp of DNA wrapped about an octamer of histone proteins. Nucleosomes are stable enough to organize the genome yet must be dynamically displaced and reassembled to allow access to the underlying DNA for transcription, replication, and DNA damage repair. Histone chaperones are a non-catalytic group of proteins that are central to the processes of nucleosome assembly and disassembly and thus the fluidity of the ever-changing chromatin landscape. Histone chaperones are responsible for binding the highly basic histone proteins, shielding them from non-specific interactions, facilitating their deposition onto DNA, and aiding in their eviction from DNA. Although most histone chaperones perform these common functions, recent structural studies of many different histone chaperones reveal that there are few commonalities in their folds. Importantly, sequence-based predictions show that histone chaperones are highly enriched in intrinsically disordered regions (IDRs) and acidic stretches. In this review, we focus on the molecular mechanisms underpinning histone binding, selectivity, and regulation of these highly dynamic protein regions. We highlight new evidence suggesting that IDRs are often critical for histone chaperone function and play key roles in chromatin assembly and disassembly pathways.


Assuntos
Cromatina/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
16.
Chem Sci ; 8(9): 6601-6612, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29449933

RESUMO

Methyltransferases use S-adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic 'writers' are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets. Successful assignment of methyltransferases' roles within intricate biological networks relies on (1) the access to enzyme mechanistic insights and (2) the efficient screening of chemical probes against these targets. To characterize methyltransferases in vitro and in vivo, we report a highly-sensitive one-step deaminase-linked continuous assay where the S-adenosyl-l-homocysteine (SAH) enzyme-product is rapidly and quantitatively catabolized to S-inosyl-l-homocysteine (SIH). To highlight the broad capabilities of this assay, we established enzymatic characteristics of two protein arginine methyltransferases (PRMT5 and PRMT7), a histone-lysine N-methyltransferase (DIM-5) and a sarcosine/dimethylglycine N-methyltransferase (SDMT). Since the coupling deaminase TM0936 displays robust activity over a broad pH-range we determined the pH dependence of SDMT reaction rates. TM0936 reactions are monitored at 263 nm, so a drawback may arise when methyl acceptor substrates absorb within this UV-range. To overcome this limitation, we used an isosteric fluorescent SAM-analog: S-8-aza-adenosyl-l-methionine. Most enzymes tolerated this probe and sustained methyltransfers were efficiently monitored through loss of fluorescence at 360 nm. Unlike discontinuous radioactive- and antibody-based assays, our assay provides a simple, versatile and affordable approach towards the characterization of methyltransferases. Supported by three logs of linear dynamic range, the 1-Step EZ-MTase can detect methylation rates as low as 2 µM h-1, thus making it possible to quantify low nanomolar concentrations of glycine N-methyltransferase within crude biological samples. With Z'-factors above 0.75, this assay is well suited to high-throughput screening and may promote the identification of novel therapeutics.

17.
Int J Dev Biol ; 60(7-8-9): 271-276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27759155

RESUMO

Chromatin is the complex of DNA and histone proteins that is the physiological form of the eukaryotic genome. Chromatin is generally repressive for transcription, especially so during early metazoan development when maternal factors are explicitly in control of new zygotic gene expression. In the important model organism Xenopus laevis, maturing oocytes are transcriptionally active with reduced rates of chromatin assembly, while laid eggs and fertilized embryos have robust rates of chromatin assembly and are transcriptionally repressed. As the DNA-to-cytoplasmic ratio decreases approaching the mid-blastula transition (MBT) and the onset of zygotic genome activation (ZGA), the chromatin assembly process changes with the concomitant reduction in maternal chromatin components. Chromatin assembly is mediated in part by histone chaperones that store maternal histones and release them into new zygotic chromatin. Here, we review literature on chromatin and transcription in frog embryos and cell-free extracts and highlight key insights demonstrating the roles of maternal and zygotic histone deposition and their relationship with transcriptional regulation. We explore the central historical and recent literature on the use of Xenopus embryos and the key contributions provided by experiments in cell-free oocyte and egg extracts for the interplay between histone chaperones, chromatin assembly, and transcriptional regulation. Ongoing and future studies in Xenopus cell free extracts will likely contribute essential new insights into the interplay between chromatin assembly and transcriptional regulation.


Assuntos
Sistema Livre de Células/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Chaperonas Moleculares/metabolismo , Transcrição Gênica/fisiologia , Animais , Histonas/metabolismo , Oócitos/metabolismo , Xenopus laevis/metabolismo
18.
Int J Dev Biol ; 60(7-8-9): 315-320, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27759158

RESUMO

Chromatin, primarily a complex of DNA and histone proteins, is the physiological form of the genome. Chromatin is generally repressive for transcription and other information transactions that occur on DNA. A wealth of post-translational modifications on canonical histones and histone variants encode regulatory information to recruit or repel effector proteins on chromatin, promoting and further repressing transcription and thereby form the basis of epigenetic information. During metazoan oogenesis, large quantities of histone proteins are synthesized and stored in preparation for the rapid early cell cycles of development and to elicit maternal control of chromatin assembly pathways. Oocyte and egg cell-free extracts of the frog Xenopus laevis are a compelling model system for the study of chromatin assembly and transcription, precisely because they exist in an extreme state primed for rapid chromatin assembly or for transcriptional activity. We show that chromatin assembly rates are slower in the X. laevis oocyte than in egg extracts, while conversely, only oocyte extracts transcribe template plasmids. We demonstrate that rapid chromatin assembly in egg extracts represses RNA Polymerase II dependent transcription, while pre-binding of TATA-Binding Protein (TBP) to a template plasmid promotes transcription. Our experimental evidence presented here supports a model in which chromatin assembly and transcription are in competition and that the onset of zygotic genomic activation may be in part due to stable transcriptional complex assembly.


Assuntos
Sistema Livre de Células/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Transcrição Gênica/fisiologia , Xenopus laevis/metabolismo , Animais , Núcleo Celular/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , RNA Polimerase II/metabolismo
19.
Epigenetics Chromatin ; 9(1): 37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27617035

RESUMO

BACKGROUND: Pax6 is a key regulator of the entire cascade of ocular lens formation through specific binding to promoters and enhancers of batteries of target genes. The promoters and enhancers communicate with each other through DNA looping mediated by multiple protein-DNA and protein-protein interactions and are marked by specific combinations of histone posttranslational modifications (PTMs). Enhancers are distinguished from bulk chromatin by specific modifications of core histone H3, including H3K4me1 and H3K27ac, while promoters show increased H3K4me3 PTM. Previous studies have shown the presence of Pax6 in as much as 1/8 of lens-specific enhancers but a much smaller fraction of tissue-specific promoters. Although Pax6 is known to interact with EP300/p300 histone acetyltransferase responsible for generation of H3K27ac, a potential link between Pax6 and histone H3K4 methylation remains to be established. RESULTS: Here we show that Pax6 co-purifies with H3K4 methyltransferase activity in lens cell nuclear extracts. Proteomic studies show that Pax6 immunoprecipitates with Set1a, Mll1, and Mll2 enzymes, and their associated proteins, i.e., Wdr5, Rbbp5, Ash2l, and Dpy30. ChIP-seq studies using chromatin prepared from mouse lens and cultured lens cells demonstrate that Pax6-bound regions are mostly enriched with H3K4me2 and H3K4me1 in enhancers and promoters, though H3K4me3 marks only Pax6-containing promoters. The shRNA-mediated knockdown of Pax6 revealed down-regulation of a set of direct target genes, including Cap2, Farp1, Pax6, Plekha1, Prox1, Tshz2, and Zfp536. Pax6 knockdown was accompanied by reduced H3K4me1 at enhancers and H3K4me3 at promoters, with little or no changes of the H3K4me2 modifications. These changes were prominent in Plekha1, a gene regulated by Pax6 in both lens and retinal pigmented epithelium. CONCLUSIONS: Our study supports a general model of Pax6-mediated recruitment of histone methyltransferases Mll1 and Mll2 to lens chromatin, especially at distal enhancers. Genome-wide data in lens show that Pax6 binding correlates with H3K4me2, consistent with the idea that H3K4me2 PTMs correlate with the binding of transcription factors. Importantly, partial reduction of Pax6 induces prominent changes in local H3K4me1 and H3K4me3 modification. Together, these data open the field to mechanistic studies of Pax6, Mll1, Mll2, and H3K4me1/2/3 dynamics at distal enhancers and promoters of developmentally controlled genes.

20.
Cell Rep ; 10(10): 1735-1748, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25772360

RESUMO

Nucleoplasmin (Npm) is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs) specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...