Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748395

RESUMO

The Antarctic continent hosts exceptional niches, making it an ideal environment for studying polyextremophilic microorganisms. These organisms are uniquely shaped by the geographic niches and variations in soil types. Here we present, a culture-independent approach using DNA metabarcoding to assess the bacterial communities associated with accumulated snow and exposed sediments across different Antarctic islands situated in the Larsemann Hills, Antarctica. The exposed sediments (ES) were found to be more diverse than the accumulated snow (AS) sediments as represented by the alpha diversity metrics. Out of the total 303 amplicon sequence variants (ASVs) found at the genus level, 93 were unique to accumulated snow sediments and 97 were unique to exposed sediments. The bacterial community composition in accumulated snow was dominated by the phylum Actinobacteriota (24.7%). However, Pseudonocardia (11.9%), Crossiella (11%), and Rhodanobacter (9.1%) were the predominant genera. In contrast, in the exposed sediments, Bacteroidota (24.6%) was the most prevalent phylum, with Crossiella (17.1%), Rhodanobacter (11.1%), and Blastocatella (10%) as the most abundant genera. Metagenomic imputations revealed the abundance of gene families responsible for carbon metabolism, coping with environmental stresses through DNA repair mechanisms, and carbon fixation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...