Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 11(22): 19793-19798, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31045352

RESUMO

Two-photon lithography allows writing of arbitrary nanoarchitectures in photopolymers. This design flexibility opens almost limitless possibilities for biological studies, but the acrylate-based polymers frequently used do not allow for adhesion and growth of some types of cells. Indeed, we found that lithographically defined structures made from OrmoComp do not support E18 murine cortical neurons. We reacted OrmoComp structures with several diamines, thereby rendering the surfaces directly permissive for neuron attachment and growth by presenting a surface coating similar to the traditional cell biology coating achieved with poly-d-lysine (PDL) and laminin. However, in contrast to PDL-laminin coatings that cover the entire surface, the amine-terminated OrmoComp structures are orthogonally modified in deference to the surrounding glass or plastic substrate, adding yet another design element for advanced biological studies.


Assuntos
Diaminas/química , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Células Cultivadas , Polilisina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
3.
Langmuir ; 33(48): 13749-13756, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29120637

RESUMO

We show that dehydrogenation of hydrogenated graphene proceeds much more slowly for bilayer systems than for single layer systems. We observe that an underlayer of either pristine or hydrogenated graphene will protect an overlayer of hydrogenated graphene against a number of chemical oxidants, thermal dehydrogenation, and degradation in an ambient environment over extended periods of time. Chemical protection depends on the ease of oxidant intercalation, with good intercalants such as Br2 demonstrating much higher reactivity than poor intercalants such as 1,2-dichloro-4,5-dicyanonbenzoquinone (DDQ). Additionally, the rate of dehydrogenation of hydrogenated graphene at 300 °C in H2/Ar was reduced by a factor of roughly 10 in the presence of a protective underlayer of graphene or hydrogenated graphene. Finally, the slow dehydrogenation of hydrogenated graphene in air at room temperature, which is normally apparent after a week, could be completely eliminated in samples with protective underlayers over the course of 39 days. Such protection will be critical for ensuring the long-term stability of devices made from functionalized graphene.

4.
Nanoscale ; 9(25): 8815-8824, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28627555

RESUMO

The crystallization of amorphous germanium telluride (GeTe) thin films is controlled with nanoscale resolution using the heat from a thermal AFM probe. The dramatic differences between the amorphous and crystalline GeTe phases yield embedded nanoscale features with strong topographic, electronic, and optical contrast. The flexibility of scanning probe lithography enables the width and depth of the features, as well as the extent of their crystallization, to be controlled by varying probe temperature and write speed. Together, these technologies suggest a new approach to nanoelectronic and opto-electronic device fabrication.

5.
Nano Lett ; 17(7): 4116-4121, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28570072

RESUMO

Nanometer-scale crystals of the two-dimensional oxide molybdenum trioxide (MoO3) were formed atop the transition metal dichalcogenides MoS2 and MoSe2. The MoO3 nanocrystals are partially commensurate with the dichalcogenide substrates, being aligned only along one of the substrate's crystallographic axes. These nanocrystals can be slid only along the aligned direction and maintain their alignment with the substrate during motion. Using an AFM probe to oscillate the nanocrystals, it was found that the lateral force required to move them increased linearly with nanocrystal area. The slope of this curve, the interfacial shear strength, was significantly lower than for macroscale systems. It also depended strongly on the duration and the velocity of sliding of the crystal, suggesting a thermal activation model for the system. Finally, it was found that lower commensuration between the nanocrystal and the substrate increased the interfacial shear, a trend opposite that predicted theoretically.

6.
ACS Appl Mater Interfaces ; 9(1): 677-683, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27977931

RESUMO

Chemically modified graphenes (CMGs) offer a means to tune a wide variety of graphene's exceptional properties. Critically, CMGs can be transferred onto a variety of substrates, thereby imparting functionalities to those substrates that would not be obtainable through conventional functionalization. One such application of CMGs is enabling and controlling the subsequent growth of inorganic thin films. In the current study, we demonstrated that CMGs enhance the growth of inorganic films on inert surfaces with poor growth properties. Fluorinated graphene transferred onto polyethylene enabled the dense and homogeneous deposition of a cadmium sulfide (CdS) film grown via chemical bath deposition. We showed that the coverage of the CdS film can be controlled by the degree of fluorination from less than 20% to complete coverage of the film. The approach can also be applied to other technologically important materials such as ZnO. Finally, we demonstrated that electron beam-generated plasma in a SF6-containing background could pattern fluorine onto a graphene/PE sample to selectively grow CdS films on the fluorinated region. Therefore, CMG coatings can tailor the surface properties of polymers and control the growth of inorganic thin films on polymers for the development of flexible electronics.

7.
Nano Lett ; 16(2): 1455-61, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26784372

RESUMO

Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate.

8.
Nat Commun ; 6: 6467, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25739513

RESUMO

Mechanical stress can drive chemical reactions and is unique in that the reaction product can depend on both the magnitude and the direction of the applied force. Indeed, this directionality can drive chemical reactions impossible through conventional means. However, unlike heat- or pressure-driven reactions, mechanical stress is rarely applied isometrically, obscuring how mechanical inputs relate to the force applied to the bond. Here we report an atomic force microscope technique that can measure mechanically induced bond scission on graphene in real time with sensitivity to atomic-scale interactions. Quantitative measurements of the stress-driven reaction dynamics show that the reaction rate depends both on the bond being broken and on the tip material. Oxygen cleaves from graphene more readily than fluorine, which in turn cleaves more readily than hydrogen. The technique may be extended to study the mechanochemistry of any arbitrary combination of tip material, chemical group and substrate.

9.
Adv Mater ; 27(10): 1774-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25594531

RESUMO

Partially hydrogenated graphene is ferromagnetic and may be patterned by electron-beam irradiation. Sequential patterning produces a patterned magnetic array. Removal of the hydrogen atoms also can convert electrically insulating fully hydrogenated graphene back into conductive graphene, enabling the writing of chemically isolated, dehydrogenated graphene nanoribbons as narrow as 100 nm.

10.
ACS Nano ; 8(12): 12410-7, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25412420

RESUMO

A sharp tip of atomic force microscope is employed to probe van der Waals forces of a silicon oxide substrate with adhered graphene. Experimental results obtained in the range of distances from 3 to 20 nm indicate that single-, double-, and triple-layer graphenes screen the van der Waals forces of the substrate. Fluorination of graphene, which makes it electrically insulating, lifts the screening in the single-layer graphene. The van der Waals force from graphene determined per layer decreases with the number of layers. In addition, increased hole doping of graphene increases the force. Finally, we also demonstrate screening of the van der Waals forces of the silicon oxide substrate by single- and double-layer molybdenum disulfide.

11.
ACS Nano ; 8(10): 9729-32, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25310518

RESUMO

The world is filled with widely varying chemical, physical, and biological stimuli. Over millennia, organisms have refined their senses to cope with these diverse stimuli, becoming virtuosos in differentiating closely related antigens, handling extremes in concentration, resetting the spent sensing mechanisms, and processing the multiple data streams being generated. Nature successfully deals with both repeating and new stimuli, demonstrating great adaptability when confronted with the latter. Interestingly, nature accomplishes these feats using a fairly simple toolbox. The sensors community continues to draw inspiration from nature's example: just look at the antibodies used as biosensor capture agents or the neural networks that process multivariate data streams. Indeed, many successful sensors have been built by simply mimicking natural systems. However, some of the most exciting breakthroughs occur when the community moves beyond mimicking nature and learns to use nature's tools in innovative ways.


Assuntos
Técnicas Biossensoriais , Natureza
12.
Nano Lett ; 14(9): 5212-7, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25072968

RESUMO

The addition of a single sheet of carbon atoms in the form of graphene can drastically alter friction between a nanoscale probe tip and a surface. Here, for the first time we show that friction can be altered over a wide range by fluorination. Specifically, the friction force between silicon atomic force microscopy tips and monolayer fluorinated graphene can range from 5-9 times higher than for graphene. While consistent with previous reports, the combined interpretation from our experiments and molecular dynamics simulations allows us to propose a novel mechanism: that the dramatic friction enhancement results from increased corrugation of the interfacial potential due to the strong local charge concentrated at fluorine sites, consistent with the Prandtl-Tomlinson model. The monotonic increase of friction with fluorination in experiments also demonstrates that friction force measurements provide a sensitive local probe of the degree of fluorination. Additionally, we found a transition from ordered to disordered atomic stick-slip upon fluorination, suggesting that fluorination proceeds in a spatially random manner.

13.
Biotechniques ; 57(1): 21-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005690

RESUMO

Thin spun-coat films (~4 nm thick) of graphene oxide (GO) constitute a versatile surface chemistry compatible with a broad range of technologically important sensor materials. Countless publications are dedicated to the nuances of surface chemistries that have been developed for sensors, with almost every material having unique characteristics. There would be enormous value in a surface chemistry that could be applied generally with functionalization and passivation already optimized regardless of the sensor material it covered. Such a film would need to be thin, conformal, and allow for multiple routes toward covalent linkages. It is also vital that the film permit the underlying sensor to transduce. Here we show that GO films can be applied over a diverse set of sensor surfaces, can link biomolecules through multiple reaction pathways, and can support cell growth. Application of a graphene veil atop a magnetic sensor array is demonstrated with an immunoassay. We also present biosensing and material characterization data for these graphene veils.


Assuntos
Técnicas Biossensoriais/instrumentação , Grafite/química , Anticorpos Monoclonais/química , Células Cultivadas , Humanos , Imunoensaio/instrumentação , Células-Tronco Mesenquimais/citologia , Hibridização de Ácido Nucleico/métodos , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
14.
Nano Lett ; 13(9): 4311-6, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23981005

RESUMO

Fluorination can alter the electronic properties of graphene and activate sites for subsequent chemistry. Here, we show that graphene fluorination depends on several variables, including XeF2 exposure and the choice of substrate. After fluorination, fluorine content declines by 50-80% over several days before stabilizing. While highly fluorinated samples remain insulating, mildly fluorinated samples regain some conductivity over this period. Finally, this loss does not reduce reactivity with alkylamines, suggesting that only nonvolatile fluorine participates in these reactions.


Assuntos
Fluoretos/química , Grafite/química , Eletricidade , Xenônio/química
15.
ACS Nano ; 7(7): 6219-24, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23758200

RESUMO

Graphene nanoribbons (GNRs) would be the ideal building blocks for all carbon electronics; however, many challenges remain in developing an appropriate nanolithography that generates high-quality ribbons in registry with other devices. Here we report direct and local fabrication of GNRs by thermochemical nanolithography, which uses a heated AFM probe to locally convert highly insulating graphene fluoride to conductive graphene. Chemically isolated GNRs as narrow as 40 nm show p-doping behavior and sheet resistances as low as 22.9 KΩ/□ in air, only approximately 10× higher than that of pristine graphene. The impact of probe temperature and speed are examined as well as the variable-temperature transport properties of the GNR.


Assuntos
Cristalização/métodos , Fluoretos/química , Grafite/química , Impressão Molecular/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fotografação/métodos , Transferência de Energia , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
16.
ACS Nano ; 7(6): 4746-55, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23659463

RESUMO

This work demonstrates the production of a well-controlled, chemical gradient on the surface of graphene. By inducing a gradient of oxygen functional groups, drops of water and dimethyl-methylphosphonate (a nerve agent simulant) are "pulled" in the direction of increasing oxygen content, while fluorine gradients "push" the droplet motion in the direction of decreasing fluorine content. The direction of motion is broadly attributed to increasing/decreasing hydrophilicity, which is correlated to high/low adhesion and binding energy. Such tunability in surface chemistry provides additional capabilities in device design for applications ranging from microfluidics to chemical sensing.


Assuntos
Grafite/química , Movimento (Física) , Flúor/química , Modelos Moleculares , Conformação Molecular , Compostos Organofosforados/química , Oxigênio/química , Propriedades de Superfície , Água/química
18.
Nano Lett ; 12(8): 4212-8, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22764747

RESUMO

We report a method to introduce direct bonding between graphene platelets that enables the transformation of a multilayer chemically modified graphene (CMG) film from a "paper mache-like" structure into a stiff, high strength material. On the basis of chemical/defect manipulation and recrystallization, this technique allows wide-range engineering of mechanical properties (stiffness, strength, density, and built-in stress) in ultrathin CMG films. A dramatic increase in the Young's modulus (up to 800 GPa) and enhanced strength (sustainable stress ≥1 GPa) due to cross-linking, in combination with high tensile stress, produced high-performance (quality factor of 31,000 at room temperature) radio frequency nanomechanical resonators. The ability to fine-tune intraplatelet mechanical properties through chemical modification and to locally activate direct carbon-carbon bonding within carbon-based nanomaterials will transform these systems into true "materials-by-design" for nanomechanics.

19.
Langmuir ; 28(21): 7957-61, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22578013

RESUMO

There has been considerable interest in chemically functionalizing graphene films to control their electronic properties, to enhance their binding to other molecules for sensing, and to strengthen their interfaces with matrices in a composite material. Most reports to date have largely focused on noncovalent methods or the use of graphene oxide. Here, we present a method to activate CVD-grown graphene sheets using fluorination followed by reaction with ethylenediamine (EDA) to form covalent bonds. Reacted graphene was characterized via X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and Raman spectroscopy as well as measurements of electrical properties. The functionalization results in stable, densely packed layers, and the unbound amine of EDA was shown to be active toward subsequent chemical reactions.


Assuntos
Aminas/química , Cobre/química , Fluoretos/química , Grafite/química , Membranas Artificiais
20.
Beilstein J Nanotechnol ; 3: 52-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428096

RESUMO

Polymer nanostructures were directly written onto substrates in ultra-high vacuum. The polymer ink was coated onto atomic force microscope (AFM) probes that could be heated to control the ink viscosity. Then, the ink-coated probes were placed into an ultra-high vacuum (UHV) AFM and used to write polymer nanostructures on surfaces, including surfaces cleaned in UHV. Controlling the writing speed of the tip enabled the control over the number of monolayers of the polymer ink deposited on the surface from a single to tens of monolayers, with higher writing speeds generating thinner polymer nanostructures. Deposition onto silicon oxide-terminated substrates led to polymer chains standing upright on the surface, whereas deposition onto vacuum reconstructed silicon yielded polymer chains aligned along the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...