Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 5(10): e16173, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167127

RESUMO

Nanoscale devices in which the interaction with light can be configured using external control signals hold great interest for next-generation optoelectronic circuits. Materials exhibiting a structural or electronic phase transition offer a large modulation contrast with multi-level optical switching and memory functionalities. In addition, plasmonic nanoantennas can provide an efficient enhancement mechanism for both the optically induced excitation and the readout of materials strategically positioned in their local environment. Here, we demonstrate picosecond all-optical switching of the local phase transition in plasmonic antenna-vanadium dioxide (VO2) hybrids, exploiting strong resonant field enhancement and selective optical pumping in plasmonic hotspots. Polarization- and wavelength-dependent pump-probe spectroscopy of multifrequency crossed antenna arrays shows that nanoscale optical switching in plasmonic hotspots does not affect neighboring antennas placed within 100 nm of the excited antennas. The antenna-assisted pumping mechanism is confirmed by numerical model calculations of the resonant, antenna-mediated local heating on a picosecond time scale. The hybrid, nanoscale excitation mechanism results in 20 times reduced switching energies and 5 times faster recovery times than a VO2 film without antennas, enabling fully reversible switching at over two million cycles per second and at local switching energies in the picojoule range. The hybrid solution of antennas and VO2 provides a conceptual framework to merge the field localization and phase-transition response, enabling precise, nanoscale optical memory functionalities.

2.
AMB Express ; 3(1): 53, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24007899

RESUMO

There is increasing recognition that the healthcare environment acts as an important reservoir for transmission of healthcare acquired infections (HCAI). One method of reducing environmental contamination would be use of antimicrobial materials. The antimicrobial activity of thin silica-copper films prepared by chemical vapour deposition was evaluated against standard strains of bacteria used for disinfectant testing and bacteria of current interest in HCAI. The structure of the coatings was determined using Scanning Electron Microscopy and their hardness and adhesion to the substrate determined. Antimicrobial activity was tested using a method based on BS ISO 22196:2007. The coatings had a pale green-brown colour and had a similar hardness to steel. SEM showed nano-structured aggregates of Cu within a silica matrix. A log10 reduction in viability of >5 could be obtained within 4 h for the disinfectant test strains and within 6 h for producing Acinetobacter baumannii, Klebsiella pneumoniae and Stenotrophomonas maltophilia. Activity against the other hospital isolates was slower but still gave log10 reduction factors of >5 for extended spectrum ß-lactamase producing Escherichia coli and >3 for vancomycin resistant Enterococcus faecium, methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa within 24 h. The results demonstrate the importance of testing antimicrobial materials destined for healthcare use against isolates of current interest in hospitals as well as standard test strains. The coatings used here can also be applied to substrates such as metals and ceramics and have potential applications where reduction of microbial environmental contamination is desirable.

3.
Appl Microbiol Biotechnol ; 79(1): 127-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18317747

RESUMO

TiO(2)-coated surfaces are increasingly studied for their ability to inactivate microorganisms. The activity of glass coated with thin films of TiO(2), CuO and hybrid CuO/TiO(2) prepared by atmospheric Chemical Vapour Deposition (Ap-CVD) and TiO(2) prepared by a sol-gel process was investigated using the inactivation of bacteriophage T4 as a model for inactivation of viruses. The chemical oxidising activity was also determined by measuring stearic acid oxidation. The results showed that the rate of inactivation of bacteriophage T4 increased with increasing chemical oxidising activity with the maximum rate obtained on highly active sol-gel preparations. However, these were delicate and easily damaged unlike the Ap-CVD coatings. Inactivation rates were highest on CuO and CuO/TiO(2) which had the lowest chemical oxidising activities. The inactivation of T4 was higher than that of Escherichia coli on low activity surfaces. The combination of photocatalysis and toxicity of copper acted synergistically to inactivate bacteriophage T4 and retained some self-cleaning activity. The presence of phosphate ions slowed inactivation but NaCl had no effect. The results show that TiO(2)/CuO coated surfaces are highly antiviral and may have applications in the food and healthcare industries.


Assuntos
Bacteriófago T4/efeitos dos fármacos , Cobre/farmacologia , Escherichia coli/efeitos dos fármacos , Fotólise , Titânio/farmacologia , Desinfetantes/farmacologia , Vidro , Viabilidade Microbiana , Oxirredução , Ácidos Esteáricos/metabolismo , Propriedades de Superfície , Raios Ultravioleta , Ensaio de Placa Viral , Inativação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...