Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274628

RESUMO

IntroductionThe COVID-19 pandemic brought an urgent need to discover novel effective therapeutics for patients hospitalized with severe COVID-19. The ISPY COVID trial was designed and implemented in early 2020 to evaluate investigational agents rapidly and simultaneously on a phase 2 adaptive platform. This manuscript outlines the design, rationale, implementation, and challenges of the ISPY COVID trial during the first phase of trial activity from April 2020 until December 2021. Methods and analysisThe ISPY COVID Trial is a multi-center open label phase 2 platform trial in the United States designed to evaluate therapeutics that may have a large effect on improving outcomes from severe COVID-19. The ISPY COVID Trial network includes academic and community hospitals with significant geographic diversity across the country. Enrolled patients are randomized to receive one of up to four investigational agents or a control and are evaluated for a family of two primary outcomes--time to recovery and mortality. The statistical design uses a Bayesian model with "stopping" and "graduation" criteria designed to efficiently discard ineffective therapies and graduate promising agents for definitive efficacy trials. Each investigational agent arm enrolls to a maximum of 125 patients per arm and is compared to concurrent controls. As of December 2021, 11 investigational agent arms had been activated, and 8 arms were complete. Enrollment and adaptation of the trial design is ongoing. Ethics and disseminationISPY COVID operates under a central institutional review board via Wake Forest School of Medicine IRB00066805. Data generated from this trial will be reported in peer reviewed medical journals. Trial registration numberClinicaltrials.gov registration number NCT04488081 Strengths and limitations of this studyO_LIThe ISPY COVID Trial was developed in early 2020 to rapidly and simultaneously evaluate therapeutics for severe COVID-19 on an adaptive open label phase 2 platform C_LIO_LIThe ISPY COVID Adaptive Platform Trial Network is an academic-industry partnership that includes academic and community hospitals spanning a wide geographic area across the United States C_LIO_LIOf December 2021, 11 investigational agent arms have been activated on the ISPY COVID Trial Platform C_LIO_LIThe ISPY COVID Trial was designed to identify therapeutic agents with a large clinical effect for further testing in definitive efficacy trials--limitations to this approach include the risk of a type 2 error C_LI

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-242677

RESUMO

The rapid emergence of coronavirus disease 2019 (COVID-19) as a global pandemic affecting millions of individuals globally has necessitated sensitive and high-throughput approaches for the diagnosis, surveillance and for determining the genetic epidemiology of SARS-CoV-2. In the present study, we used the COVIDSeq protocol, which involves multiplex-PCR, barcoding and sequencing of samples for high-throughput detection and deciphering the genetic epidemiology of SARS-CoV-2. We used the approach on 752 clinical samples in duplicates, amounting to a total of 1536 samples which could be sequenced on a single S4 sequencing flow cell on NovaSeq 6000. Our analysis suggests a high concordance between technical duplicates and a high concordance of detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR approaches. An in-depth analysis revealed a total of six samples in which COVIDSeq detected SARS-CoV-2 in high confidence which were negative in RT-PCR. Additionally, the assay could detect SARS-CoV-2 in 21 samples and 16 samples which were classified inconclusive and pan-sarbeco positive respectively suggesting that COVIDSeq could be used as a confirmatory test. The sequencing approach also enabled insights into the evolution and genetic epidemiology of the SARS-CoV-2 samples. The samples were classified into a total of 3 clades. This study reports two lineages B.1.112 and B.1.99 for the first time in India. This study also revealed 1,143 unique single nucleotide variants and added a total of 73 novel variants identified for the first time. To the best of our knowledge, this is the first report of the COVIDSeq approach for detection and genetic epidemiology of SARS-CoV-2. Our analysis suggests that COVIDSeq could be a potential high sensitivity assay for detection of SARS-CoV-2, with an additional advantage of enabling genetic epidemiology of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...