Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 243: 114132, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39094209

RESUMO

Severe bleeding and bacterial infections pose significant challenges to the global public health. Effective hemostatic materials have the potential to be used for rapid control of bleeding at the wound site. In this study, mesoporous silica nanoparticles (MSN) were doped with zinc ions (MSN@Zn) and subsequently functionalized with carboxyl (-COOH) groups through post-grafting, resulting in (MSN@Zn-COOH). The results demonstrated the successful functionalization of carboxyl groups on the surface of MSN@Zn mesoporous materials with minimal impact on the morphology. The released zinc ions showed potent antibacterial activity (above ∼80 %) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vitro and in vivo assessments of MSN@Zn-COOH revealed excellent hemostatic effects and favorable blood compatibility. Hemolysis percentages associated with MSN@Zn-COOH exhibited noteworthy reductions in comparison to MSN. Furthermore, a decrease in APTT (a test evaluating the intrinsic coagulation pathway) of modified MSN@Zn indicated enhanced hemostasis, supported by their negative zeta potential (∼ -14 to -43 mV). Importantly, all samples showed no cytotoxicity. This work underscores the potential of MSN@Zn-COOH, with its combined hemostatic performance and antibacterial activity, for emergency clinical applications.


Assuntos
Antibacterianos , Escherichia coli , Hemostáticos , Nanopartículas , Dióxido de Silício , Staphylococcus aureus , Propriedades de Superfície , Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química , Zinco/química , Zinco/farmacologia , Hemostáticos/farmacologia , Hemostáticos/química , Porosidade , Animais , Testes de Sensibilidade Microbiana , Humanos , Hemólise/efeitos dos fármacos , Hemostasia/efeitos dos fármacos , Tamanho da Partícula , Camundongos
2.
Molecules ; 27(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35956974

RESUMO

In this study, for the first time, a composite fluff pulp was produced based on the combination of softwood (i.e., long-length fiber), hardwood (i.e., short-length fiber), non-wooden pulps (i.e., bagasse) and bentonite, with specific amounts to be used in hygienic pads (e.g., baby diapers and sanitary napkins). After the defibration process, the manufactured fluff pulp was placed as an absorbent mass in diapers and sanitary napkins. Therefore, tests related to the fluff pulp, such as grammage, thickness, density, ash content, humidity percentage, pH and brightness, tests related to the manufactured baby diapers, such as absorption capacity, retention rate, retention capacity, absorption time and rewet, and tests related to the sanitary napkin, such as absorption capacity and rewet, were performed according to the related standards. The results demonstrated that increasing the amount of bagasse pulp led to increasing the ash content, pH and density of fluff pulp and decreasing the brightness. The addition of bentonite as a filler also increased ash content and pH of fluff pulp. The results also demonstrated that increasing of bagasse pulp up to 30% in combination with softwood pulp led to increasing absorption capacity, retention rate, retention capacity, absorption time and rewet of baby diapers and of sanitary napkins.


Assuntos
Bentonita , Pele , Humanos , Indústrias , Lactente
3.
J Mech Behav Biomed Mater ; 61: 590-599, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179144

RESUMO

The composite scaffolds of the chitosan and multiphasic calcium phosphate (HW) short fibers were prepared by freeze drying and characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM and FE-SEM). The mechanical properties of the scaffolds were assessed by compression test. The incorporation of HW fibers consisting three phases of hydroxyapatite (HA), beta-tricalcium phosphate (ß-TCP) and calcium pyrophosphate (CPP) into the chitosan matrices was associated with an increase in pore size, density and compressive strength and modulus, and a decrease in porosity and swelling ratio of the scaffolds. The strongest composite scaffolds in this study with a chitosan: HW fibers weight ratio of 1:1 showed a mean porosity of 69% and a mean strength and modulus of 420kPa and 3.87MPa, respectively. The in vitro bioactivity of the composites was confirmed by the formation of a calcium phosphate rich layer on the surface of soaked scaffolds in simulated body fluid. The findings of this initial work indicate that the chitosan-multiphasic calcium phosphate short fibers may be a suitable material for bone scaffolding.


Assuntos
Materiais Biocompatíveis , Fosfatos de Cálcio/química , Pirofosfato de Cálcio/química , Quitosana/química , Alicerces Teciduais , Teste de Materiais , Microscopia Eletrônica de Varredura , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual
4.
Biomed Mater ; 3(1): 015006, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18458493

RESUMO

The dissolution of plasma-sprayed hydroxyapatite (PHA) coatings with different characteristics, produced by various spraying conditions, in a Tris-buffered solution at pH 7.4 was experimentally studied through the measurement of the release of calcium ions. The phase composition of the coatings at surface and interface, and the porosity were evaluated. The analytical modeling revealed that the calcium dissolution process was composed of two stages. The first stage was found to be both surface and diffusion controlled. The second stage was an exactly diffusion-controlled dissolution. In the first stage, the rate of dissolution and the solubility of the coatings with minimum contents of impurity phases were mainly influenced by the contents of recrystallized HA (RHA) and amorphous calcium phosphate (ACP). It is suggested that the optimized values of the ACP and the RHA at the coating surface can tend to encourage the early fixation properties of the PHA coatings.


Assuntos
Líquidos Corporais/química , Materiais Revestidos Biocompatíveis/química , Cristalização/métodos , Durapatita/química , Modelos Químicos , Coloides/química , Simulação por Computador , Gases/química , Temperatura Alta , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA