Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29521, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681616

RESUMO

Kale is known for its exceptional nourishing and functional benefits to human body. However, it is an understudied species from genomic as well as agronomic aspects. It is important to characterize niche kale germplasms around the world to systematically conserve and utilize its genetic variability, especially for commercial traits in the interest of growers, consumers and industry. With this view, genomic and phenotypic characterizations of 62 Kashmiri kale accessions including popular landraces were done to estimate and partition genetic diversity, understand trait relationships, develop population structure and divulge marker-trait associations of economic significance. Sixty-six cross species microsatellite (SSR) markers within Brassica genus amplified 269 alleles in the germplasm. Their polymorphic information content (PIC) ranged from 0.00078 to 0.953 with an average of 0.407. The population structure analysis and neighbour joining tree clustering categorized the germplasm into three sub-populations. AMOVA revealed more within-population variance (67.73 %) than among-populations (32.27 %) variance. The principal component analysis (PCA) involving 24 agronomical traits revealed seven PCs (PC1 to PC7) having Eigen values more than 1, which explained a cumulative variation of 69.21 %. Association mapping with respect to these 24 agronomical traits using mixed linear model and general linear model revealed six overlapping significant marker-trait relationships with five being significant at probability value of 0.001/0.0001. The highly significant associations of two SSRs with economically important traits (siliqua length and seed weight) significantly correlated/related with leaf yield and seed yield were revealed for their possible utilization in marker assisted breeding for higher leaf and seed yields.

2.
Viruses ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992503

RESUMO

Besides apple mosaic virus (ApMV), apple necrotic mosaic virus (ApNMV) has also been found to be associated with apple mosaic disease. Both viruses are unevenly distributed throughout the plant and their titer decreases variably with high temperatures, hence requiring proper tissue and time for early and real-time detection within plants. The present study was carried out to understand the distribution and titer of ApMV and ApNMV in apple trees from different plant parts (spatial) during different seasons (temporal) for the optimization of tissue and time for their timely detection. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) was carried out to detect and quantify both viruses in the various plant parts of apple trees during different seasons. Depending on the availability of tissue, both ApMV and ApNMV were detected in all the plant parts during the spring season using RT-PCR. During the summer, both viruses were detected only in seeds and fruits, whereas they were detected in leaves and pedicel during the autumn season. The RT-qPCR results showed that during the spring, the ApMV and ApNMV expression was higher in leaves, whereas in the summer and autumn, the titer was mostly detected in seeds and leaves, respectively. The leaves in the spring and autumn seasons and the seeds in the summer season can be used as detection tissues through RT-PCR for early and rapid detection of ApMV and ApNMV. This study was validated on 7 cultivars of apples infected with both viruses. This will help to accurately sample and index the planting material well ahead of time, which will aid in the production of virus-free, quality planting material.


Assuntos
Ilarvirus , Malus , Vírus do Mosaico , Vírus de Plantas , Doenças das Plantas , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...