Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 10(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38392080

RESUMO

The successful investigation and prosecution of significant crimes, including child pornography, insurance fraud, movie piracy, traffic monitoring, and scientific fraud, hinge largely on the availability of solid evidence to establish the case beyond any reasonable doubt. When dealing with digital images/videos as evidence in such investigations, there is a critical need to conclusively prove the source camera/device of the questioned image. Extensive research has been conducted in the past decade to address this requirement, resulting in various methods categorized into brand, model, or individual image source camera identification techniques. This paper presents a survey of all those existing methods found in the literature. It thoroughly examines the efficacy of these existing techniques for identifying the source camera of images, utilizing both intrinsic hardware artifacts such as sensor pattern noise and lens optical distortion, and software artifacts like color filter array and auto white balancing. The investigation aims to discern the strengths and weaknesses of these techniques. The paper provides publicly available benchmark image datasets and assessment criteria used to measure the performance of those different methods, facilitating a comprehensive comparison of existing approaches. In conclusion, the paper outlines directions for future research in the field of source camera identification.

2.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400276

RESUMO

HyperSpectral Imaging (HSI) plays a pivotal role in various fields, including medical diagnostics, where precise human vein detection is crucial. HyperSpectral (HS) image data are very large and can cause computational complexities. Dimensionality reduction techniques are often employed to streamline HS image data processing. This paper presents a HS image dataset encompassing left- and right-hand images captured from 100 subjects with varying skin tones. The dataset was annotated using anatomical data to represent vein and non-vein areas within the images. This dataset is utilised to explore the effectiveness of dimensionality reduction techniques, namely: Principal Component Analysis (PCA), Folded PCA (FPCA), and Ward's Linkage Strategy using Mutual Information (WaLuMI) for vein detection. To generate experimental results, the HS image dataset was divided into train and test datasets. Optimum performing parameters for each of the dimensionality reduction techniques in conjunction with the Support Vector Machine (SVM) binary classification were determined using the Training dataset. The performance of the three dimensionality reduction-based vein detection methods was then assessed and compared using the test image dataset. Results show that the FPCA-based method outperforms the other two methods in terms of accuracy. For visualization purposes, the classification prediction image for each technique is post-processed using morphological operators, and results show the significant potential of HS imaging in vein detection.


Assuntos
Imageamento Hiperespectral , Processamento de Imagem Assistida por Computador , p-Cloroanfetamina/análogos & derivados , Humanos , Processamento de Imagem Assistida por Computador/métodos , Máquina de Vetores de Suporte , Análise de Componente Principal
3.
Sensors (Basel) ; 19(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096584

RESUMO

Digital camera sensors are designed to record all incident light from a captured scene, but they are unable to distinguish between the colour of the light source and the true colour of objects. The resulting captured image exhibits a colour cast toward the colour of light source. This paper presents a colour constancy algorithm for images of scenes lit by non-uniform light sources. The proposed algorithm uses a histogram-based algorithm to determine the number of colour regions. It then applies the K-means++ algorithm on the input image, dividing the image into its segments. The proposed algorithm computes the Normalized Average Absolute Difference (NAAD) for each segment and uses it as a measure to determine if the segment has sufficient colour variations. The initial colour constancy adjustment factors for each segment with sufficient colour variation is calculated. The Colour Constancy Adjustment Weighting Factors (CCAWF) for each pixel of the image are determined by fusing the CCAWFs of the segments, weighted by their normalized Euclidian distance of the pixel from the center of the segments. Results show that the proposed method outperforms the statistical techniques and its images exhibit significantly higher subjective quality to those of the learning-based methods. In addition, the execution time of the proposed algorithm is comparable to statistical-based techniques and is much lower than those of the state-of-the-art learning-based methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA