Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol Inform ; 12: 15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012719

RESUMO

BACKGROUND: Observer studies in pathology often utilize a limited number of representative slides per case, selected and reported in a nonstandardized manner. Reference diagnoses are commonly assumed to be generalizable to all slides of a case. We examined these issues in the context of pathologist concordance for histologic subtype classification of ovarian carcinomas (OCs). MATERIALS AND METHODS: A cohort of 114 OCs consisting of 72 cases with a single representative slide (Group 1) and 42 cases with multiple representative slides (148 slides, 2-6 sections per case, Group 2) was independently reviewed by three experts in gynecologic pathology (case-based review). In a follow-up study, each individual slide was independently reviewed in a randomized order by the same pathologists (section-based review). RESULTS: Average interobserver concordance varied from 100% for Group 1 to 64.3% for Group 2 (86.8% across all cases). Across Group 2, 19 cases (45.2%) had at least one slide classified as a different subtype than the subtype assigned from case-based review, demonstrating the impact of intratumoral heterogeneity. Section-based concordance across individual sections from Group 2 was comparable to case-based concordance for those cases indicating diagnostic challenges at the individual section level. Findings demonstrate the increased diagnostic complexity of heterogeneous tumors that require multiple section sampling and its impact on pathologist performance. CONCLUSIONS: The proportion of cases with multiple representative slides in cohorts used in validation studies, such as those conducted to evaluate artificial intelligence/machine learning tools, can influence diagnostic performance, and if not accounted for, can cause disparities between research and real-world observations and between research studies. Case selection in validation studies should account for tumor heterogeneity to create balanced datasets in terms of diagnostic complexity.

2.
Arch Pathol Lab Med ; 145(12): 1516-1525, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33635941

RESUMO

CONTEXT.­: Despite several studies focusing on the validation of whole slide imaging (WSI) across organ systems or subspecialties, the use of WSI for specific primary diagnosis tasks has been underexamined. OBJECTIVE.­: To assess pathologist performance for the histologic subtyping of individual sections of ovarian carcinomas using a light microscope and WSI. DESIGN.­: A panel of 3 experienced gynecologic pathologists provided reference subtype diagnoses for 212 histologic sections from 109 ovarian carcinomas based on optical microscopy review. Two additional attending pathologists provided diagnoses and also identified the presence of a set of 8 histologic features important for ovarian tumor subtyping. Two experienced gynecologic pathologists and 2 fellows reviewed the corresponding WSI images for subtype classification and feature identification. RESULTS.­: Across pathologists specialized in gynecologic pathology, concordance with the reference diagnosis for the 5 major ovarian carcinoma subtypes was significantly higher for a pathologist reading on a microscope than each of 2 pathologists reading on WSI. Differences were primarily due to more frequent classification of mucinous carcinomas as endometrioid with WSI. Pathologists had generally low agreement in identifying histologic features important to ovarian tumor subtype classification with either an optical microscopy or WSI. This result suggests the need for refined histologic criteria for identifying such features. Interobserver agreement was particularly low for identifying intracytoplasmic mucin with WSI. Inconsistencies in evaluating nuclear atypia and mitoses with WSI were also observed. CONCLUSIONS.­: Further research is needed to specify the reasons for these diagnostic challenges and to inform users and manufacturers of WSI technology.


Assuntos
Carcinoma , Neoplasias Ovarianas , Feminino , Humanos , Microscopia , Variações Dependentes do Observador , Neoplasias Ovarianas/diagnóstico por imagem , Patologistas
3.
PLoS One ; 13(1): e0190783, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351281

RESUMO

This paper addresses the problem of quantifying biomarkers in multi-stained tissues based on the color and spatial information of microscopy images of the tissue. A deep learning-based method that can automatically localize and quantify the regions expressing biomarker(s) in any selected area on a whole slide image is proposed. The deep learning network, which we refer to as Whole Image (WI)-Net, is a fully convolutional network whose input is the true RGB color image of a tissue and output is a map showing the locations of each biomarker. The WI-Net relies on a different network, Nuclei (N)-Net, which is a convolutional neural network that classifies each nucleus separately according to the biomarker(s) it expresses. In this study, images of immunohistochemistry (IHC)-stained slides were collected and used. Images of nuclei (4679 RGB images) were manually labeled based on the expressing biomarkers in each nucleus (as p16 positive, Ki-67 positive, p16 and Ki-67 positive, p16 and Ki-67 negative). The labeled nuclei images were used to train the N-Net (obtaining an accuracy of 92% in a test set). The trained N-Net was then extended to WI-Net that generated a map of all biomarkers in any selected sub-image of the whole slide image acquired by the scanner (instead of classifying every nucleus image). The results of our method compare well with the manual labeling by humans (average F-score of 0.96). In addition, we carried a layer-based immunohistochemical analysis of cervical epithelium, and showed that our method can be used by pathologists to differentiate between different grades of cervical intraepithelial neoplasia by quantitatively assessing the percentage of proliferating cells in the different layers of HPV positive lesions.


Assuntos
Automação , Biomarcadores/metabolismo , Redes Neurais de Computação , Neoplasias do Colo do Útero/metabolismo , Biópsia , Feminino , Humanos , Imuno-Histoquímica , Neoplasias do Colo do Útero/patologia
4.
Biomed Eng Online ; 14: 96, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26499452

RESUMO

BACKGROUND: Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. METHODS: We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. RESULTS: The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 µm below the epithelial surface were respectively 100, 100, and 92 %. CONCLUSIONS: Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical settings.


Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Displasia do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Adulto , Colposcopia , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Fenótipo , Neoplasias do Colo do Útero/patologia , Adulto Jovem , Displasia do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...