Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(15): 4685-4706, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37184211

RESUMO

Host resistance is the primary means to control Verticillium dahliae, a soil-borne pathogen causing major losses on a broad range of plants, including tomato. The tissues and mechanisms responsible for resistance remain obscure. In the field, resistant tomato used as rootstocks does not confer resistance. Here, we created bi-grafted plants with near-isogenic lines (NILs) exhibiting (Ve1) or lacking (ve1) resistance to V. dahliae race 1. Ten days after inoculation, scion and rootstock tissues were subjected to differential gene expression and co-expression network analyses. Symptoms only developed in susceptible scions regardless of the rootstock. Infection caused more dramatic alteration of tomato gene expression in susceptible compared with resistant tissues, including pathogen receptor, signaling pathway, pathogenesis-related protein, and cell wall modification genes. Differences were observed between scions and rootstocks, primarily related to physiological processes in these tissues. Gene expression in scions was influenced by the rootstock genotype. A few genes were associated with the Ve1 genotype, which was independent of infection or tissue type. Several were physically clustered, some near the Ve1 locus on chromosome 9. Transcripts mapped to V. dahliae were dominated by secreted candidate effector proteins. These findings advance knowledge of molecular mechanisms underlying the tomato-V. dahliae interaction.


Assuntos
Solanum lycopersicum , Verticillium , Solanum lycopersicum/genética , Verticillium/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Plantas Geneticamente Modificadas/genética , Resistência à Doença/genética , Doenças das Plantas/genética
2.
Plant Dis ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627809

RESUMO

Widespread use of tomato cultivars with the Sw-5 resistance gene has led to the emergence of resistance-breaking (RB) strains of tomato spotted wilt virus across the globe. In June of 2022, tomato spotted wilt (TSW) symptoms were observed at two farms (A and B, within 15 miles of each other) in Rowan County, NC on several commercial TSW resistant tomato cultivars (all heterozygous for the Sw-5 gene). At farm A, ~10% of plants had symptomatic foliage with ~30% of fruit with symptoms, while at farm B, up to 50% of plants had symptomatic foliage with ~80% of fruit with symptoms. Visual symptoms included stunting, severe leaf curling and bronzing, necrotic lesions on leaves, petioles and stems, and concentric ring spots on fruit (Supplementary Fig. 1). TSWV ImmunoStrips (AgDia, Elkhart, IN) and reverse-transcription (RT)-PCR with NSm primers (di Rienzo et al 2018) confirmed the presence of TSWV in 12 symptomatic plants sampled across the two farms. Primers designed to detect Impatiens necrotic spot virus, groundnut ringspot virus, tomato chlorotic spot virus, tomato chlorosis virus, alfalfa mosaic virus, and tomato necrotic streak virus (ilarvirus, Badillo et al., 2016) failed to generate amplicons of the expected size from cDNA generated from these field samples. The amplicons from full-length NSm cDNA were sequenced from independent, single-leaflet isolates from the TSWV-positive plants (three from farm A, nine from farm B) with the expectation of finding an amino acid (aa) substitution associated with the Sw-5 RB phenotype identified previously in CA (C118Y, Batuman et al. 2017) or Spain (C118Y and T120N, Lopez et al. 2011). All three nucleotide sequences from farm A contained the NSm C118Y substitution reported in CA. All three sequences were 99% identical (including the C118Y mutation) to NCBI GenBank accession KU179600.1, a TSWV isolate collected from GA in 2014 with no cultivar information reported. The nine nucleotide sequences from farm B contained neither of the two previously reported aa substitutions associated with the RB phenotype. Instead, all contained a D122G substitution within a conserved region of the TSWV NSm protein reported to be involved in direct interaction with the Sw-5 protein (Zhu et al 2017). Likewise, Huang et al (2021) generated a D122A mutation in TSWV-NSm, resulting in failure to elicit a Sw-5 mediated hypersensitive response. Three NSm sequences retrieved from GenBank contained the D122G substitution (AY848921.1, HM015516.1, KU179582.1), however, this mutation was not implicated directly with RB phenotypes (Ciuffo et al., 2005; Lopez et al., 2011; Marshall, 2016). The RB phenotype was confirmed with the NC variants on 'Mountain Merit' (Sw-5) by two means of virus inoculation: mechanical, rub-inoculation with extracted sap from infected plants, and thrips transmission assays with lab colony-maintained, Frankliniella occidentalis, the western flower thrips. Symptomatic leaf tissue obtained from these inoculation assays tested positive for TSWV by DAS-ELISA (AgDia, Elkhart, IN) and RT-PCR with NSm primers, providing definitive evidence of the occurrence of RB-TSWV at both farms, and subsequent sequencing confirmed the C118Y and D122G substitutions. This report warrants further investigation of the putative origins, prevalence and epidemiological implications of RB-TSWV variants in NC tomato production, and the development of new sources of resistance to TSWV.

3.
Plant Direct ; 6(8): e422, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949955

RESUMO

Reduced plant height due to shortened stems is beneficial for improving crop yield potential, better resilience to biotic/abiotic stresses, and rapid crop producer adoption of the agronomic and management practices. Breeding tomato plants with a reduced height, however, poses a particular challenge because this trait is often associated with a significant fruit size (weight) reduction. The tomato BRACHYTIC (BR) locus controls plant height. Genetic mapping and genome assembly revealed three flowering promoting factor 1 (FPF1) genes located within the BR mapping interval, and a complete coding sequence deletion of the telomere proximal FPF1 (Solyc01g066980) was found in the br allele but not in BR. The knock-out of Solyc01g066980 in BR large-fruited fresh-market tomato reduced the height and fruit yield, but the ability to produce large size fruits was retained. However, concurrent yield evaluation of a pair of sister lines with or without the br allele revealed that artificial selection contributes to commercially acceptable yield potential in br tomatoes. A network analysis of gene-expression patterns across genotypes, tissues, and the gibberellic acid (GA) treatment revealed that member(s) of the FPF1 family may play a role in the suppression of the GA biosynthesis in roots and provided a framework for identifying the responsible molecular signaling pathways in br-mediated phenotypic changes. Lastly, mutations of br homologs also resulted in reduced height. These results shed light on the genetic and physiological mechanisms by which the br allele alters tomato architecture.

4.
Hortic Res ; 8(1): 138, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075031

RESUMO

Within large-fruited germplasm, fruit size is influenced by flat and globe shapes. Whereas flat fruits are smaller and retain better marketability, globe fruits are larger and more prone to cuticle disorders. Commercial hybrids are often developed from crosses between flat and globe shaped parents because flat shape is thought to be dominant and fruit size intermediate. The objectives of this study were to determine the genetic basis of flat/globe fruit shape in large-fruited fresh-market tomato germplasm and to characterize its effects on several fruit traits. Twenty-three advanced single plant selections from the Fla. 8000 × Fla. 8111B cross were selectively genotyped using a genome-wide SNP array, and inclusive composite interval mapping identified a single locus on the upper arm of chromosome 12 associated with shape, which we termed globe. A 238-plant F2 population and 69 recombinant inbred lines for this region from the same parents delimited globe to approximately 392-kilobases. A germplasm survey representing materials from multiple breeding programs demonstrated that the locus explains the flat/globe shape broadly. A single base insertion in an exon of Solyc12g006860, a gene annotated as a brassinosteroid hydroxylase, segregated completely with shape in all populations tested. CRISPR/Cas9 knock out plants confirmed this gene as underlying the globe locus. In silico analysis of the mutant allele of GLOBE among 595 wild and domesticated accessions suggested that the allele arose very late in the domestication process. Fruit measurements in three genetic backgrounds evidenced that globe impacts fruit size and several fruit shape attributes, pedicel length/width, and susceptibility of fruit to weather check. The mutant allele of GLOBE appears mostly recessive for all traits except fruit size where it acts additively.

5.
Sci Rep ; 9(1): 7673, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31114006

RESUMO

Tomato spotted wilt tospovirus (TSWV), one of the most important plant viruses, causes yield losses to many crops including tomato. The current disease management for TSWV is based mainly on breeding tomato cultivars containing the Sw-5 locus. Unfortunately, several Sw-5 resistance-breaking strains of TSWV have been identified. Sw-7 is an alternative locus conferring resistance to a broad range of TSWV strains. In an effort to uncover gene networks that are associated with the Sw-7 resistance, we performed a comparative transcriptome profiling and gene expression analysis between a nearly-isogenic Sw-7 line and its susceptible recurrent parent (Fla. 8059) upon infection by TSWV. A total of 1,244 differentially expressed genes were identified throughout a disease progression process involving networks of host resistance genes, RNA silencing/antiviral defense genes, and crucial transcriptional and translational regulators. Notable induced genes in Sw-7 include those involved in callose accumulation, lignin deposition, proteolysis process, transcriptional activation/repression, and phosphorylation. Finally, we investigated potential involvement of PR-5 in the Sw-7 resistance. Interestingly, PR-5 overexpressed plants conferred enhanced resistance, resulting in delay in virus accumulation and symptom expression. These findings will facilitate breeding and genetic engineering efforts to incorporate this new source of resistance in tomato for protection against TSWV.


Assuntos
Imunidade Vegetal , Solanum lycopersicum/genética , Tospovirus/patogenicidade , Transcriptoma , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Theor Appl Genet ; 132(5): 1543-1554, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30758531

RESUMO

KEY MESSAGE: Ty-6 is a major resistance gene on chromosome 10 of tomato that provides resistance against monopartite and bipartite begomoviruses and complements resistance conferred by the known Ty-3 and ty-5 genes. Resistance to monopartite and bipartite begomoviruses is an important breeding objective for cultivated tomato. Several begomovirus resistance genes have been introgressed from related Solanum species and are available for breeding purposes. In the present study, we mapped an additional locus, Ty-6, to chromosome 10 of tomato. Ty-6 is effective against both monopartite Tomato yellow leaf curl virus (TYLCV) and bipartite Tomato mottle virus (ToMoV). Gene action is incomplete dominance, with an intermediate resistance response when Ty-6 is heterozygous. Analysis of populations segregating for Ty-6 along with Ty-3 or ty-5 indicates that the highest level of resistance against TYLCV is attained when Ty-6 is combined with an additional resistance allele. Our results also demonstrate that ty-5 is ineffective against ToMoV. Although multiple SNPs linked to Ty-6 were identified and can be used for breeding purposes, none of these were consistently polymorphic between Ty-6 and ty-6 breeding lines. Further research is underway to generate resequencing data for several Ty-6 inbred lines for the discovery of additional sequence polymorphisms that can be used for fine mapping and characterizing the Ty-6 locus.


Assuntos
Cromossomos de Plantas , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/virologia , Solanum lycopersicum/genética , Begomovirus , Mapeamento Cromossômico , Solanum lycopersicum/virologia , Doenças das Plantas/genética , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...