Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38486365

RESUMO

AIMS: This study aimed to isolate plant growth and drought tolerance-promoting bacteria from the nutrient-poor rhizosphere soil of Thar desert plants and unravel their molecular mechanisms of plant growth promotion. METHODS AND RESULTS: Among our rhizobacterial isolates, Enterobacter cloacae C1P-IITJ, Kalamiella piersonii J4-IITJ, and Peribacillus frigoritolerans T7-IITJ, significantly enhanced root and shoot growth (4-5-fold) in Arabidopsis thaliana under PEG-induced drought stress. Whole genome sequencing and biochemical analyses of the non-pathogenic bacterium T7-IITJ revealed its plant growth-promoting traits, viz., solubilization of phosphate (40-73 µg/ml), iron (24 ± 0.58 mm halo on chrome azurol S media), and nitrate (1.58 ± 0.01 µg/ml nitrite), along with production of exopolysaccharides (125 ± 20 µg/ml) and auxin-like compounds (42.6 ± 0.05 µg/ml). Transcriptome analysis of A. thaliana inoculated with T7-IITJ and exposure to drought revealed the induction of 445 plant genes (log2fold-change > 1, FDR < 0.05) for photosynthesis, auxin and jasmonate signalling, nutrient uptake, redox homeostasis, and secondary metabolite biosynthesis pathways related to beneficial bacteria-plant interaction, but repression of 503 genes (log2fold-change < -1) including many stress-responsive genes. T7-IITJ enhanced proline 2.5-fold, chlorophyll 2.5-2.8-fold, iron 2-fold, phosphate 1.6-fold, and nitrogen 4-fold, and reduced reactive oxygen species 2-4.7-fold in plant tissues under drought. T7-IITJ also improved the germination and seedling growth of Tephrosia purpurea, Triticum aestivum, and Setaria italica under drought and inhibited the growth of two plant pathogenic fungi, Fusarium oxysporum, and Rhizoctonia solani. CONCLUSIONS: P. frigoritolerans T7-IITJ is a potent biofertilizer that regulates plant genes to promote growth and drought tolerance.


Assuntos
Arabidopsis , Bacillus , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Bactérias , Fosfatos/metabolismo , Ferro/metabolismo , Raízes de Plantas/microbiologia , Secas
2.
3 Biotech ; 14(2): 48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38268986

RESUMO

In the current study, gene network analysis revealed five novel disease-resistance proteins against bacterial leaf blight (BB) and rice blast (RB) diseases caused by Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae (M. oryzae), respectively. In silico modeling, refinement, and model quality assessment were performed to predict the best structures of these five proteins and submitted to ModelArchive for future use. An in-silico annotation indicated that the five proteins functioned in signal transduction pathways as kinases, phospholipases, transcription factors, and DNA-modifying enzymes. The proteins were localized in the nucleus and plasma membrane. Phylogenetic analysis showed the evolutionary relation of the five proteins with disease-resistance proteins (XA21, OsTRX1, PLD, and HKD-motif-containing proteins). This indicates similar disease-resistant properties between five unknown proteins and their evolutionary-related proteins. Furthermore, gene expression profiling of these proteins using public microarray data showed their differential expression under Xoo and M. oryzae infection. This study provides an insight into developing disease-resistant rice varieties by predicting novel candidate resistance proteins, which will assist rice breeders in improving crop yield to address future food security through molecular breeding and biotechnology. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03893-5.

3.
Sci Rep ; 13(1): 22605, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114687

RESUMO

Type 2 diabetes mellitus (T2DM) and cancer are highly prevalent diseases imposing major health burden globally. Several epidemiological studies indicate increased susceptibility to cancer in T2DM patients. However, genetic factors linking T2DM with cancer have been poorly studied. In this study, we followed computational approaches using the raw gene expression data of peripheral blood mononuclear cells of T2DM and cancer patients available in the gene expression omnibus (GEO) database. Our analysis identified shared differentially expressed genes (DEGs) in T2DM and three common cancer types, namely, pancreatic cancer (PC), liver cancer (LC), and breast cancer (BC). The functional and pathway enrichment analysis of identified common DEGs highlighted the involvement of critical biological pathways, including cell cycle events, immune system processes, cell morphogenesis, gene expression, and metabolism. We retrieved the protein-protein interaction network for the top DEGs to deduce molecular-level interactions. The network analysis found 7, 6, and 5 common hub genes in T2DM vs. PC, T2DM vs. LC, and T2DM vs. BC comparisons, respectively. Overall, our analysis identified important genetic markers potentially able to predict the chances of PC, LC, and BC onset in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Prognóstico , Leucócitos Mononucleares/metabolismo , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Marcadores Genéticos , Biologia Computacional , Biomarcadores , Redes Reguladoras de Genes , Neoplasias/genética
4.
Planta ; 257(1): 11, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515736

RESUMO

MAIN CONCLUSION: Priestia species isolated from the cowpea rhizosphere altered the transcriptome of cowpea roots by colonization and enhanced nutrient uptake, antioxidant mechanisms, and photosynthesis, protecting cowpea from drought and nutrient deficiency. Cowpea is a significant grain legume crop primarily grown in sub-Saharan Africa, Asia, and South America. Drought and nutrient deficiency affect the growth and yield of cowpea. To address this challenge, we studied the phyto-beneficial effects of stress-tolerant rhizobacteria on the biomass yield of cowpea under water- and nutrient-deficit conditions. Among the bacteria isolated, two rhizobacillus genotypes, C8 (Priestia filamentosa; basonym: Bacillus filamentosus) and C29 (Priestia aryabhattai; basonym: Bacillus aryabhattai) were evaluated for the improvement of seed germination and growth of cowpea under stress. Our study revealed that C8 protected cowpea from stress by facilitating phosphorus and potassium uptake, protecting it from oxidative damage, reducing transpiration, and enhancing CO2 assimilation. A 17% increase in root biomass upon C8 inoculation was concomitant with the induction of stress tolerance genes in cowpea roots predominantly involved in growth and metabolic processes, cell wall organization, ion homeostasis, and cellular responses to phosphate starvation. Our results indicate a metabolic alteration in cowpea root triggered by P. filamentosa, leading to efficient nutrient reallocation in the host plant. We propose inoculation with P. filamentosa as an effective strategy for improving the yield of cowpea in low-input agriculture, where chemical fertilization and irrigation are less accessible to resource-poor farmers.


Assuntos
Secas , Vigna , Rizosfera , Vigna/genética , Transcriptoma , Nutrientes , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...