Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(5): 2351-2364, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38477252

RESUMO

The objective of the present work was to evaluate the potential of a nuclear localization signal (NLS) toward facilitating intracellular delivery and enhancement in the therapeutic efficacy of the molecular cargo. Toward this, an in-house synthesized porphyrin derivative, namely, 5-carboxymethyelene-oxyphenyl-10,15,20-tris(4-methoxyphenyl) porphyrin (UTriMA), was utilized for conjugation with the NLS sequence [PKKKRKV]. The three compounds synthesized during the course of the present work, namely DOTA-Lys-NLS, DOTA-UTriMA-Lys-NLS, and DOTA-Lys-UTriMA, were evaluated for cellular toxicity in cancer cell lines (HT1080), wherein all exhibited minimal dark toxicity. However, during photocytotoxicity studies with DOTA-Lys-UTriMA and DOTA-UTriMA-Lys-NLS conjugates in the same cell line, the latter exhibited significantly higher light-dependent toxicity compared to the former. Furthermore, the photocytotoxicity for DOTA-UTriMA-Lys-NLS in a healthy cell line (WI26VA4) was found to be significantly lower than that observed in the cancer cells. Fluorescence cell imaging studies carried out in HT1080 cancer cells revealed intracellular accumulation for the NLS-conjugated porphyrin (DOTA-UTriMA-Lys-NLS), whereas unconjugated porphyrin (DOTA-Lys-UTriMA) failed to do so. To evaluate the radiotherapeutic effects of the synthesized conjugates, all three compounds were radiolabeled with 177Lu, a well-known therapeutic radionuclide with high radiochemical purity (>95%). During in vitro studies, the [177Lu]Lu-DOTA-UTriMA-Lys-NLS complex exhibited the highest cell binding as well as internalization among the three radiolabeled complexes. Biological distribution studies for the radiolabeled compounds were performed in a fibrosarcoma-bearing small animal model, wherein significantly higher accumulation and prolonged retention of [177Lu]Lu-DOTA-UTriMA-Lys-NLS (9.32 ± 1.27% IA/g at 24 h p.i.) in the tumorous lesion compared to [177Lu]Lu-UTriMA-Lys-DOTA (2.3 ± 0.13% IA/g at 24 h p.i.) and [177Lu]Lu-DOTA-Lys-NLS complexes (0.26 ± 0.17% IA/g at 24 h p.i.) were observed. The results of the biodistribution studies were further corroborated by recording serial SPECT-CT images of fibrosarcoma-bearing Swiss mice administered with [177Lu]Lu-DOTA-UTriMA-Lys-NLS at different time points. Tumor regression studies performed with [177Lu]Lu-DOTA-UTriMA-Lys-NLS in the same animal model with two different doses [250 µCi (9.25 MBq) and 500 µCi (18.5 MBq)] resulted in a significant reduction in tumor mass in the treated group of animals. The above results revealed a definite enhancement in the targeting ability of molecular cargo upon conjugation with NLS and hence indicated that this strategy may be helpful for the preparation of drug-NLS conjugates as multimodal agents.


Assuntos
Sinais de Localização Nuclear , Porfirinas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Lutécio , Camundongos Nus , Porfirinas/química , Porfirinas/farmacologia , Radioisótopos , Distribuição Tecidual
2.
Photodiagnosis Photodyn Ther ; 45: 103951, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161036

RESUMO

Metal-free near-infrared absorbing photosensitizers (PS) have been considered promising candidates for photodynamic therapy. Curcumin, curcuminoid, and its derivatives have therapeutic values due to their anti-inflammatory, antifungal, and antiproliferative properties. Curcuminoid-BF2 chelates have also been studied as cell imaging probes, however, their applications in photodynamic therapy are rare. In this article, we describe the synthesis and therapeutic evaluation of quinolizidine fused curcuminoid-BF2 chelate (Quinolizidine CUR-BF2) containing an acid-sensitive group. This donor-acceptor-donor curcuminoid-BF2 derivative exhibits absorption and emission in the deep red region with an absorption band maximum of ∼647 nm and a weak emission band at approximately 713 nm. It is interesting to note that this derivative has a high molar extinction coefficient (164,655 M-1cm-1). Quinolizidine CUR-BF2 possesses intramolecular charge transfer properties, facilitating the production of singlet oxygen (1O2), which plays a crucial role in cell death. Additionally, Quinolizidine CUR-BF2 can enable the selective release of active ingredients in an acidic medium (pH 5). Furthermore, the nanoaggregates of PS were prepared by encapsulating Quinolizidine CUR-BF2 within Pluronic F127 block co-polymer for better water-dispersibility and enhanced cellular uptake. Dark cytotoxicity of nanoaggregates was found to be negligible, whereas they exhibited significant photoinduced cytotoxicity towards cancer cells (MCF-7 and A549) under irradiation of 635 nm light. Further, the cell death pathway using Quinolizidine CUR-BF2 nanoaggregates as PS is found to occur through apoptosis. Specifically, the present study deals with the successful preparation of Quinolizidine CUR-BF2 nanoaggregates for enhanced water-dispersibility and cellular uptake as well as the efficacy evaluation of developed nanoaggregates for photodynamic therapy.


Assuntos
Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Diarileptanoides , Células A549 , Células MCF-7 , Fármacos Fotossensibilizantes/farmacologia , Água
3.
ACS Omega ; 8(47): 44545-44557, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046289

RESUMO

Extremely short half-life therapeutic molecule nitric oxide (NO) plays significant roles in the functioning of various physiological and pathological processes in the human body, whereas doxorubicin hydrochloride (DOX) is a clinically important anticancer drug widely used in cancer chemotherapy. Thus, the intracellular delivery of these therapeutic molecules is tremendously important to achieve their full potential. Herein, we report a novel approach for the development of highly water-dispersible magnetic nanocarriers for codelivery of NO and DOX. Primarily, bifunctional magnetic nanoparticles enriched with carboxyl and thiol groups were prepared by introducing cysteine onto the surface of citrate-functionalized Fe3O4 nanoparticles. DOX was electrostatically conjugated onto the surface of bifunctional nanoparticles via carboxyl moieties, whereas the thiol group was further nitrosated to provide NO-releasing molecules. The developed magnetic nanocarrier exhibited good aqueous colloidal stability, protein resistance behavior, and high encapsulation efficacy for NO (65.5%) and DOX (85%), as well as sustained release characteristics. Moreover, they showed superior cytotoxicity toward cancer (A549 and MCF-7) cells via apoptosis induction over normal (WI26VA4) cells. Specifically, we have developed magnetic nanocarriers having the capability of dual delivery of NO and DOX, which holds great potential for combinatorial cancer treatment.

4.
Sci Rep ; 11(1): 11977, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099738

RESUMO

Although recent advances in the treatment of acute coronary heart disease have reduced mortality rates, few therapeutic strategies exist to mitigate the progressive loss of cardiac function that manifests as heart failure. Nuclear factor, erythroid 2 like 2 (Nfe2l2, Nrf2) is a transcriptional regulator that is known to confer transient myocardial cytoprotection following acute ischemic insult; however, its sustained activation paradoxically causes a reductive environment characterized by excessive antioxidant activity. We previously identified a subset of 16 microRNAs (miRNA) significantly diminished in Nrf2-ablated (Nrf2-/-) mouse hearts, leading to the hypothesis that increasing levels of Nrf2 activation augments miRNA induction and post-transcriptional dysregulation. Here, we report the identification of distinct miRNA signatures (i.e. "reductomiRs") associated with Nrf2 overexpression in a cardiac-specific and constitutively active Nrf2 transgenic (caNrf2-Tg) mice expressing low (TgL) and high (TgH) levels. We also found several Nrf2 dose-responsive miRNAs harboring proximal antioxidant response elements (AREs), implicating these "reductomiRs" as putative meditators of Nrf2-dependent post-transcriptional regulation. Analysis of mRNA-sequencing identified a complex network of miRNAs and effector mRNAs encoding known pathological hallmarks of cardiac stress-response. Altogether, these data support Nrf2 as a putative regulator of cardiac miRNA expression and provide novel candidates for future mechanistic investigation to understand the relationship between myocardial reductive stress and cardiac pathophysiology.


Assuntos
Biomarcadores/metabolismo , Coração/fisiologia , MicroRNAs/metabolismo , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Antioxidantes , Sequência de Bases , Citoproteção , Regulação da Expressão Gênica , Insuficiência Cardíaca , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais
5.
Eur J Med Chem ; 213: 113184, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33497889

RESUMO

tetracationic (TMPyP) and tricationic porphyrin (TriMPyCOOHP) derivatives were synthesized, characterized and investigated for binding with DNA by Isothermal Titration Calorimetry as well as by UV-Vis spectroscopy in order to study the effect of structural variation on tumor targeting efficacy of cationically charged porphyrin derivatives. Fluorescence cell imaging studies performed in cancer cell lines corroborated the findings of aforementioned studies. Photocytotoxicity experiments in A549 cell lines revealed relatively higher light dependent cytotoxic effects exerted by TMPyP compared to TriMPyCOOHP. In-vivo experiments in tumor bearing animal model revealed relatively longer retention of 68Ga-TMPyP in tumorous lesion compared to that of 68Ga-TriMPyCOOHP. The study reveals that removal of one of the positive charges of the tetracationic porphyrin derivatives significantly reduces their DNA binding ability and cytotoxicity as well as brings changes in the pharmacokinetic pattern and tumor retention in small animal model.


Assuntos
Antineoplásicos/farmacologia , Fibrossarcoma/diagnóstico por imagem , Fibrossarcoma/tratamento farmacológico , Fotoquimioterapia , Porfirinas/farmacologia , Tomografia por Emissão de Pósitrons , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Porfirinas/síntese química , Porfirinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
ACS Appl Bio Mater ; 4(8): 6005-6015, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006928

RESUMO

Cationic liposomes have become an attractive tool to deliver genes and interfering RNA into cells. Herein, we report the application of spontaneously formed cationic vesicles in mixtures of lecithin and cationic amphiphiles for efficient transfection of plasmid DNA and siRNA into cells. The average hydrodynamic diameter of the phospholipid vesicles was modulated by changing the ratio of dihexadecyldimethylammonium bromide (DDAB) to phospholipid in the vesicles. The vesicles were characterized by dynamic light scattering, ζ potential, and small-angle X-ray scattering. Depending on the ratio of DDAB to phospholipid, the average size of the vesicles can be varied in the range of 150-300 nm with a ζ potential of +40 mV. The ability of these cationic vesicles to form lipoplexes upon binding with pDNA is demonstrated by ζ potential, isothermal titration calorimetry, gel retardation, and DNase I digestion assay. The enthalpy of binding between pDNA and cationic liposome was found to be -5.7 (±0.8) kJ/mol. The cellular uptake studies of lipoplexes observed by fluorescence microscopy confirmed good transfection efficiency of DDAB liposomes in MCF-7 and HeLa cells. The fluorescent imaging analysis showed effective gene delivery and expression of green fluorescent protein. In addition, the formulation has demonstrated an ability to deliver small interfering RNA (siBRD4) for efficient gene silencing as seen by a significant decrease in BRD4 protein level in siBRD4-treated cells. Comparison of the transfection efficiency of different formulations suggests that DDAB-rich mixed phospholipid vesicles with size <200 nm are better than large size vesicles for improved endocytosis and gene expression.


Assuntos
Lecitinas , Lipossomos , Cátions/química , Proteínas de Ciclo Celular/genética , DNA/genética , Células HeLa , Humanos , Lipossomos/química , Proteínas Nucleares/genética , Plasmídeos/genética , Compostos de Amônio Quaternário , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Transfecção
7.
J Pharm Sci ; 110(5): 2114-2120, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33338492

RESUMO

The poor water solubility and bioactivity of drugs can be potentially improved by using suitable nanocarriers. Herein, an economically viable methodology is developed for encapsulation of hydrophobic anticancer agent, curcumin in casein nanoparticles (CasNPs). The successful encapsulation of curcumin was evident from the structural, thermal and spectroscopic analysis of curcumin encapsulated CasNPs (Cur-CasNPs). The CasNPs and Cur-CasNPs samples were lyophilized for their long-term stability and lyophilized powders are found to be stable for more than 6 months at 4-8 °C. From DLS studies, it has been observed that the variation in average size of drug formulations before and after reconstitution were less than 5%. Further, it shows good water-dispersibility, enhanced bioavailability and pH dependent charge conversal feature. Cur-CasNPs showed pH dependent release characteristics with higher at mild acidic environment and enhanced toxicity towards cancer cells (MCF-7) as compared to normal cells (CHO). Moreover, the CasNPs are non-toxic in nature and the developed nanoformulation of drug exhibits substantial cellular internalization and enhanced toxicity towards MCF-7 cells over pure drug, indicating their potential applications.


Assuntos
Curcumina , Nanopartículas , Disponibilidade Biológica , Caseínas , Portadores de Fármacos , Humanos , Células MCF-7 , Tamanho da Partícula
8.
Int J Biol Macromol ; 166: 851-860, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161076

RESUMO

We report a facile approach for the preparation of protein conjugated glutaric acid functionalized Fe3O4 magnetic nanoparticles (Pro-Glu-MNPs), having improved colloidal stability and heating efficacy. The Pro-Glu-MNPs were prepared by covalent conjugation of BSA protein onto the surface of glutaric acid functionalized Fe3O4 magnetic nanoparticles (Glu-MNPs) obtained through thermal decomposition. XRD and TEM analyses confirmed the formation of crystalline Fe3O4 nanoparticles of average size ~5 nm, whereas the conjugation of BSA protein to them was evident from XPS, FTIR, TGA, DLS and zeta-potential measurements. These Pro-Glu-MNPs showed good colloidal stability in different media (water, phosphate buffer saline, cell culture medium) and exhibited room temperature superparamagnetism with good magnetic field responsivity towards the external magnet. The induction heating studies revealed that the heating efficacy of these Pro-Glu-MNPs was strongly reliant on the particle concentration and their stabilizing media. In addition, they showed enhanced heating efficacy over Glu-MNPs as surface passivation by protein offers colloidal stability to them as well as prevents their aggregation under AC magnetic field. Further, Pro-Glu-MNPs are biocompatible towards normal cells and showed substantial cellular internalization in cancerous cells, suggesting their potential application in hyperthermia therapy.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanoconjugados/química , Soroalbumina Bovina/química , Glutaratos/química , Células HeLa , Humanos , Células MCF-7 , Estabilidade Proteica
9.
Mater Sci Eng C Mater Biol Appl ; 117: 111272, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919636

RESUMO

Lanreotide peptide (LP) has high affinity to somatostatin receptors like SSTR2 and is commonly used in the treatment of neuro-endocrine tumors. The main objective of this study is to target gold nanoparticles (AuNPs) towards SSTR2-positive cancer cells using lanreotide peptide (LP) as the targeting agent for enhanced tumor uptake and antitumor activity. pH mediated changes in the surface potential of LP and AuNP is used to prepare electrostatically bound AuNP-LP complexes. AuNP-LP complex formation was demonstrated by UV-Visible spectroscopy, surface potential, dynamic light scattering (DLS), small angle X-ray scattering and HR-TEM. Confocal microscopy and flow cytometric studies show that AuNP-LP complex has higher cellular uptake in SSTR2 expressed cancer cells (MCF-7 and AR42J) than in CHO cells. The enhanced cellular uptake of LP coated AuNPs lead to ~1.5 to 2-fold GSH depletion and enhanced ROS generation in MCF-7 cells. The preferential cytotoxicity of the AuNP-LP complex towards MCF-7 and AR42J cells, as revealed by MTT assay, is consistent with the increased cellular uptake. Our studies demonstrate that LP coated AuNP can be used as an effective platform to selectively target SSTR2 positive cancer cells for combination therapy approaches involving gold nanoparticles.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Células CHO , Cricetinae , Cricetulus , Ouro , Humanos , Peptídeos , Peptídeos Cíclicos , Somatostatina/análogos & derivados
11.
Free Radic Biol Med ; 87: 125-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26119781

RESUMO

The thioredoxin (Trx) system is one major redox system in mammalian cells. One of its component, Trx, is involved in redox homeostasis and many cellular biological processes through participating in disulfide reduction, S-nitrosylation/S-denitrosylation reactions and protein-protein interactions. In this study, we report the identification of a novel interaction between cytosolic/nuclear Trx1 and apoptosis inducing factor (AIF), and the redox sensitivity and biological significance of the Trx-AIF interaction was characterized. Cytosolic Trx1 but not mitochondrial Trx2 was observed to interact with AIF under physiological conditions and Trx1's active site cysteines were crucial for the interaction. Under oxidative stress conditions, Trx-AIF interaction was disrupted. When the treated cells were allowed to recover from oxidative stress by means of removal of the oxidants, interaction between Trx1 and AIF was re-established time-dependently, which underpins the biological relevance of a Trx-dependent redox regulation of AIF-mediated cell death. Indeed, in times of oxidative stress, nuclear translocation of AIF was found to occur concurrently with perturbations to the Trx-AIF interaction. Once localized in the nucleus, reduced Trx1 hindered the interaction between AIF and DNA, thereby bringing about an attenuation of AIF-mediated DNA damage. In conclusion, characterization of the Trx-AIF interaction has led to an understanding of the effect of reduced Trx1 on possibly regulating AIF-dependent cell death through impeding AIF-mediated DNA damage. Importantly, identification of the novel interaction between Trx1 and AIF has provided opportunities to design and develop therapeutically relevant strategies that either promote or prevent this protein-protein interaction for the treatment of different disease states.


Assuntos
Fator de Indução de Apoptose/metabolismo , Estresse Oxidativo/genética , Mapas de Interação de Proteínas/genética , Tiorredoxinas/genética , Animais , Fator de Indução de Apoptose/genética , Dano ao DNA/genética , Células HEK293 , Humanos , Mitocôndrias , Oxirredução , Tiorredoxinas/metabolismo
12.
Int Immunopharmacol ; 24(2): 440-450, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25585231

RESUMO

Sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)-butane], an aliphatic isothiocyanate (ITC) naturally derived from cruciferous vegetables and largely known for its chemopreventive potential also appears to possess anti-inflammatory potential. In this study, structural analogs of SF {compound 1 [1-isothiocyanato-4-(methylcarbonyl)-butane] and 2 [1-isothiocyanato-3-(methylcarbonyl)-propane]} containing a carbonyl group in place of the sulfinyl group in SF, were evaluated for their anti-inflammatory activities. In RAW 264.7 cells, the ITCs at non-toxic concentrations caused an inhibition of NO and prostaglandin E2 (PGE2) release through suppressing expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as a reduction in matrix metalloproteinase-9 (MMP-9) expression, secretion and gelatinolytic activity. Further work performed on human monocytes isolated from blood of healthy donors revealed that the ITCs not only suppressed the expression and release of pro-inflammatory mediators IL-1ß, IL-6, TNF-α and MMP-9, but also suppressed their antibody-independent phagocytic and chemotactic migratory abilities. These anti-inflammatory activities were mediated through suppression of the NF-κB and MAPK signaling pathways. In addition, the ITCs were revealed to interact with the cysteines in inhibitor of nuclear factor-κB kinase ß subunit (IKKß), which could contribute at least partly to the suppression of NF-κB signaling. In conclusion, results obtained in this study provide deeper insights into the anti-inflammatory properties of SF and its methylcarbonyl analogs and the underlying mechanisms. These compounds thus serve as promising candidates for clinical applications in controlling inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Isotiocianatos/farmacologia , Monócitos/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Células HEK293 , Humanos , Quinase I-kappa B/metabolismo , Lipopolissacarídeos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Monócitos/fisiologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Fagocitose/efeitos dos fármacos , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...