Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 81: 101900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354856

RESUMO

The pyruvate transporter MPC1 (mitochondrial pyruvate carrier 1) acts as a tumour-suppressor, loss of which correlates with a pro-tumorigenic phenotype and poor survival in several tumour types. In high-grade serous ovarian cancers (HGSOC), patients display copy number loss of MPC1 in around 78% of cases and reduced MPC1 mRNA expression. To explore the metabolic effect of reduced expression, we demonstrate that depleting MPC1 in HGSOC cell lines drives expression of key proline biosynthetic genes; PYCR1, PYCR2 and PYCR3, and biosynthesis of proline. We show that altered proline metabolism underpins cancer cell proliferation, reactive oxygen species (ROS) production, and type I and type VI collagen formation in ovarian cancer cells. Furthermore, exploring The Cancer Genome Atlas, we discovered the PYCR3 isozyme to be highly expressed in a third of HGSOC patients, which was associated with more aggressive disease and diagnosis at a younger age. Taken together, our study highlights that targeting proline metabolism is a potential therapeutic avenue for the treatment of HGSOC.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Neoplasias Ovarianas , Feminino , Humanos , Proliferação de Células , Colágeno , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias Ovarianas/genética , Prolina
2.
Biol Reprod ; 109(4): 415-431, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37540198

RESUMO

Endometrial inflammation is associated with reduced pregnancy per artificial insemination (AI) and increased pregnancy loss in cows. It was hypothesized that induced endometritis alters histotroph composition and induces inflammatory signatures on conceptus that compromise development. In Experiment 1, lactating cows were assigned to control (CON; n = 23) or to an intrauterine infusion of Escherichia coli and Trueperella pyogenes (ENDO; n = 34) to induce endometritis. Cows received AI 26 days after treatment, and the uterine fluid and conceptuses were collected on day 16 after AI. In Experiment 2, Holstein heifers were assigned to CON (n = 14) or ENDO (n = 14). An embryo was transferred on day 7 of the estrous cycle, and uterine fluid and conceptuses were recovered on day 16. Composition of histotroph and trophoblast and embryonic disc gene expression were assessed. Bacterial-induced endometritis in lactating cows altered histotroph composition and pathways linked to phospholipid synthesis, cellular energy production, and the Warburg effect. Also, ENDO reduced conceptus length in cows and altered expression of genes involved in pathogen recognition, nutrient uptake, cell growth, choline metabolism, and conceptus signaling needed for maternal recognition of pregnancy. The impact of ENDO was lesser on conceptuses from heifers receiving embryo transfer; however, the affected genes and associated pathways involved restricted growth and increased immune response similar to the observed responses to ENDO in conceptuses from lactating cows. Bacterial-induced endometrial inflammation altered histotroph composition, reduced conceptus growth, and caused embryonic cells to activate survival rather than anabolic pathways that could compromise development.


Assuntos
Endometrite , Doenças Uterinas , Gravidez , Humanos , Bovinos , Animais , Feminino , Endometrite/veterinária , Lactação/fisiologia , Inseminação Artificial/veterinária , Inflamação
3.
Commun Biol ; 6(1): 186, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36807406

RESUMO

Many species of pathogenic bacteria damage tissue cells by secreting toxins that form pores in plasma membranes. Here we show that glucocorticoids increase the intrinsic protection of tissue cells against pore-forming toxins. Dexamethasone protected several cell types against the cholesterol-dependent cytolysin, pyolysin, from Trueperella pyogenes. Dexamethasone treatment reduced pyolysin-induced leakage of potassium and lactate dehydrogenase, limited actin cytoskeleton alterations, reduced plasma membrane blebbing, and prevented cytolysis. Hydrocortisone and fluticasone also protected against pyolysin-induced cell damage. Furthermore, dexamethasone protected HeLa and A549 cells against the pore-forming toxins streptolysin O from Streptococcus pyogenes, and alpha-hemolysin from Staphylococcus aureus. Dexamethasone cytoprotection was not associated with changes in cellular cholesterol or activating mitogen-activated protein kinase (MAPK) cell stress responses. However, cytoprotection was dependent on the glucocorticoid receptor and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). Collectively, our findings imply that glucocorticoids could be exploited to limit tissue damage caused by pathogens secreting pore-forming toxins.


Assuntos
Citoproteção , Glucocorticoides , Humanos , Bactérias/metabolismo , Colesterol/metabolismo , Dexametasona
4.
J Dairy Sci ; 106(2): 1464-1474, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460497

RESUMO

Uterine diseases and heat stress (HS) are major challenges for the dairy cow. Heat stress alters host immune resilience, making cows more susceptible to the development of uterine disease. Although HS increases the incidence of uterine disease, the mechanisms by which this occurs are unclear. We hypothesize that evaporative cooling (CL) to alleviate HS in prepartum cows has carry-over effects on postpartum innate immunity. Nulliparous pregnant Holstein heifers were assigned to receive either forced CL that resulted in cool conditions (shade with water soakers and fans; n = 14) or to remain under HS conditions (barn shade only; n = 16) for 60 d prepartum. Postpartum, all cows were housed in a freestall barn equipped with shade, water soakers, and fans. Respiratory rate and rectal temperature during the prepartum period were greater in HS heifers compared with CL heifers, indicative of HS. Although milk production was decreased in HS cows compared with CL cows, the incidence of uterine disease and content of total or pathogenic bacteria in vaginal mucus on d 7 or d 21 postpartum was not affected by treatment. Whole blood was collected on d 21 and subjected to in vitro stimulation with lipopolysaccharide. Lipopolysaccharide-induced accumulation of IL-1ß, IL-10, and MIP-1α was greater in blood collected from HS cows compared with CL cows. Our results imply that prepartum HS during late pregnancy has carry-over effects on postpartum innate immunity, which may contribute to the increased incidence of uterine disease observed in cows exposed to prepartum HS.


Assuntos
Doenças dos Bovinos , Doenças Uterinas , Bovinos , Gravidez , Animais , Feminino , Lactação/fisiologia , Lipopolissacarídeos , Temperatura Alta , Período Pós-Parto , Resposta ao Choque Térmico , Doenças Uterinas/veterinária , Leite , Dieta
5.
Theriogenology ; 191: 67-76, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970030

RESUMO

Heat stress and uterine diseases, including metritis and endometritis, both reduce milk yields and reduce reproductive performance. Bacterial growth is promoted by elevated temperature while heat stress reduces host immune cell function, but it is not known whether increased environmental temperature promotes uterine disease by altering host immunity or bacterial growth. We hypothesize that seasonal variations in environmental temperature influence metritis incidence in the dairy cow independent of bacterial prevalence in the reproductive tract. To investigate how environmental temperature may impact metritis incidence, records of 3507 calvings in Florida over a 5-year period were evaluated. The incidence of metritis increased from 21.1% in the cool season (October through March) to 24.2% during the warm season (April through September, P < 0.05). To elucidate a link between environmental temperature and uterine disease, 102 cows were enrolled during the warm season (September 2017; n = 51) and cool season (February-March 2018; n = 51). Cows were maintained on pasture during the dry period and moved to free stall barns with fans and water soakers immediately prior to calving and remained in that environment after calving. Vaginal mucus was collected and scored on days 7 (to evaluate metritis) and 21 (to evaluate endometritis) postpartum to evaluate the incidence of uterine disease and quantify bacterial content and species using qPCR. Daily milk yield for the first 60 DIM was reduced during the warm season compared with the cool season (32.6 ± 1.62 vs 37.23 ± 1.60 kg, P < 0.05) consistent with effects of prepartum heat stress. Interestingly, more cows had persistent uterine disease on both d 7 and d 21 in the warm season compared with the cool season (58.0 vs 29.4%, P < 0.05). Regardless of calving season the total bacterial content in the vagina was greater on d 7 compared to d 21. While metritis incidence was increased in the warm season, the vaginal content of total bacteria, Escherichia coli, Trueperella pyogenes, Fusobacterium necrophorum and Prevotella melaninogenica were similar during the cool season and the warm season. Our data suggests that prepartum heat stress related to season of calving increased the incidence of metritis and persistence of uterine disease in the dairy cow independent of vaginal bacteria content. The possibility that prepartum heat stress perturbs host immune function and increases the risk of metritis when cows are exposed to an equivalent number of pathogenic bacteria requires further investigation.


Assuntos
Doenças dos Bovinos , Endometrite , Doenças Uterinas , Animais , Bactérias , Bovinos , Doenças dos Bovinos/patologia , Endometrite/epidemiologia , Endometrite/microbiologia , Endometrite/veterinária , Feminino , Febre/veterinária , Incidência , Lactação , Leite , Período Pós-Parto , Estações do Ano , Doenças Uterinas/epidemiologia , Doenças Uterinas/veterinária , Vagina/patologia
6.
Reproduction ; 164(3): 109-123, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900358

RESUMO

In brief: Bovine granulosa cells need to be cultured with serum to generate inflammation in response to bacterial lipopolysaccharide. This study shows that it is cholesterol that facilitates this lipopolysaccharide-stimulated cytokine secretion. Abstract: During bacterial infections of the bovine uterus or mammary gland, ovarian granulosa cells mount inflammatory responses to lipopolysaccharide (LPS). In vitro, LPS stimulates granulosa cell secretion of the cytokines IL-1α and IL-1ß and the chemokine IL-8. These LPS-stimulated inflammatory responses depend on culturing granulosa cells with serum, but the mechanism is unclear. Here, we tested the hypothesis that cholesterol supports inflammatory responses to LPS in bovine granulosa cells. We used granulosa cells isolated from 4 to 8 mm and >8.5 mm diameter ovarian follicles and manipulated the availability of cholesterol. We found that serum or follicular fluid containing cholesterol increased LPS-stimulated secretion of IL-1α and IL-1ß from granulosa cells. Conversely, depleting cholesterol using methyl-ß-cyclodextrin diminished LPS-stimulated secretion of IL-1α, IL-1ß and IL-8 from granulosa cells cultured in serum. Follicular fluid contained more high-density lipoprotein cholesterol than low-density lipoprotein cholesterol, and granulosa cells expressed the receptor for high-density lipoprotein, scavenger receptor class B member 1 (SCARB1). Furthermore, culturing granulosa cells with high-density lipoprotein cholesterol, but not low-density lipoprotein or very low-density lipoprotein cholesterol, increased LPS-stimulated inflammation in granulosa cells. Cholesterol biosynthesis also played a role in granulosa cell inflammation because RNAi of mevalonate pathway enzymes inhibited LPS-stimulated inflammation. Finally, treatment with follicle-stimulating hormone, but not luteinising hormone, increased LPS-stimulated granulosa cell inflammation, and follicle-stimulating hormone increased SCARB1 protein. However, changes in inflammation were not associated with changes in oestradiol or progesterone secretion. Taken together, these findings imply that cholesterol supports inflammatory responses to LPS in granulosa cells.


Assuntos
Interleucina-8 , Lipopolissacarídeos , Animais , Bovinos , Células Cultivadas , Colesterol/metabolismo , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/metabolismo , Inflamação/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Lipoproteínas HDL/metabolismo , Progesterona/metabolismo
7.
PLoS One ; 17(3): e0265062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358206

RESUMO

Pregnancy induces changes in the transcriptome of the bovine endometrium from 15 days after insemination. However, pregnancy is less likely to occur if cows had a postpartum bacterial infection of the uterus, even after the resolution of disease. We hypothesized that uterine bacterial infection alters the endometrial transcriptomic signature of pregnancy after the resolution of disease. To examine the endometrial transcriptomic signature of pregnancy, cows were inseminated 130 days after intrauterine infusion of pathogenic Escherichia coli and Trueperella pyogenes, subsequently endometrium was collected 16 days after insemination for RNA sequencing. We found 171 pregnancy regulated genes in cows 146 days after bacterial infection. When comparing our findings with previous studies that described the endometrial transcriptomic signature of pregnancy in healthy cows, 24 genes were consistently differentially expressed in pregnancy, including MX1, MX2 and STAT1. However, 12 pregnancy regulated genes were found only in the endometrium of healthy cows, including ISG15 and TRANK1. Furthermore, 28 pregnancy regulated genes were found only in the endometrium of cows following bacterial infection and these were associated with altered iNOS, TLR, and IL-7 signaling pathways. Although 94 predicted upstream regulators were conserved amongst the studies, 14 were found only in the endometrium of pregnant healthy cows, and 5 were found only in cows following bacterial infection, including AIRE, NFKBIA, and DUSP1. In conclusion, there were both consistent and discordant features of the endometrial transcriptomic signature of pregnancy 146 days after intrauterine bacterial infusion. These findings imply that there is an essential transcriptomic signature of pregnancy, but that infection induces long-term changes in the endometrium that affect the transcriptomic response to pregnancy.


Assuntos
Endometrite , Doenças Uterinas , Animais , Bovinos , Endometrite/veterinária , Endométrio/fisiologia , Escherichia coli , Feminino , Gravidez , Transcriptoma , Útero
8.
Artigo em Inglês | MEDLINE | ID: mdl-37576606

RESUMO

Background: Bacterial infection of the uterus in postpartum dairy cows limits ovarian follicle growth, reduces blood estradiol concentrations, and leads to accumulation of bacterial lipopolysaccharide (LPS) in ovarian follicular fluid. Although treating granulosa cells with LPS in vitro decreases the expression of the estradiol synthesis enzyme CYP19A1 and reduces estradiol secretion, the molecular mechanisms are unclear. The transcription factor CCAAT enhancer binding protein beta (CEBPß) not only facilitates the transcription of LPS regulated cytokines, but also binds to the promoter region of CYP19A1 in humans, mice, and buffalo. We hypothesized that LPS alters CEBPß signaling to reduce CYP19A1 expression, resulting in decreased estradiol secretion. Methods: Bovine granulosa cells were isolated from small/medium or large follicles and treated with LPS in the presence of FSH and androstenedione for up to 24 h. Results: Treatment with LPS increased CXCL8 and IL6 gene expression and reduced estradiol secretion in granulosa cells from both small/medium and large follicles. However, LPS only reduced CYP19A1 expression in granulosa cells from large follicles. Treatment with LPS increased CEBPB expression and reduced CEBPß nuclear localization in granulosa cells from small/medium follicles, but not granulosa cells from large follicles. Conclusions: Although LPS reduces estradiol synthesis in bovine granulosa cells, the effects of LPS on CYP19A1 and CEBPß are dependent on follicle size.

9.
FASEB J ; 35(6): e21640, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33991130

RESUMO

Certain species of pathogenic bacteria damage tissues by secreting cholesterol-dependent cytolysins, which form pores in the plasma membranes of animal cells. However, reducing cholesterol protects cells against these cytolysins. As the first committed step of cholesterol biosynthesis is catalyzed by squalene synthase, we explored whether inhibiting this enzyme protected cells against cholesterol-dependent cytolysins. We first synthesized 22 different nitrogen-containing bisphosphonate molecules that were designed to inhibit squalene synthase. Squalene synthase inhibition was quantified using a cell-free enzyme assay, and validated by computer modeling of bisphosphonate molecules binding to squalene synthase. The bisphosphonates were then screened for their ability to protect HeLa cells against the damage caused by the cholesterol-dependent cytolysin, pyolysin. The most effective bisphosphonate reduced pyolysin-induced leakage of lactate dehydrogenase into cell supernatants by >80%, and reduced pyolysin-induced cytolysis from >75% to <25%. In addition, this bisphosphonate reduced pyolysin-induced leakage of potassium from cells, limited changes in the cytoskeleton, prevented mitogen-activated protein kinases cell stress responses, and reduced cellular cholesterol. The bisphosphonate also protected cells against another cholesterol-dependent cytolysin, streptolysin O, and protected lung epithelial cells and primary dermal fibroblasts against cytolysis. Our findings imply that treatment with bisphosphonates that inhibit squalene synthase might help protect tissues against pathogenic bacteria that secrete cholesterol-dependent cytolysins.


Assuntos
Colesterol/metabolismo , Citotoxinas/efeitos adversos , Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Fibroblastos/citologia , Substâncias Protetoras/farmacologia , Células A549 , Proteínas de Bactérias/efeitos adversos , Toxinas Bacterianas/efeitos adversos , Proliferação de Células , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Células HeLa , Proteínas Hemolisinas/efeitos adversos , Humanos , Estreptolisinas/efeitos adversos
10.
Reproduction ; 161(5): 499-512, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33651711

RESUMO

Bovine granulosa cells are often exposed to energy stress, due to the energy demands of lactation, and exposed to lipopolysaccharide from postpartum bacterial infections. Granulosa cells mount innate immune responses to lipopolysaccharide, including the phosphorylation of mitogen-activated protein kinases and production of pro-inflammatory interleukins. Cellular energy depends on glycolysis, and energy stress activates intracellular AMPK (AMP-activated protein kinase), which in turn inhibits mTOR (mechanistic target of rapamycin). Here, we tested the hypothesis that manipulating glycolysis, AMPK or mTOR to mimic energy stress in bovine granulosa cells limits the inflammatory responses to lipopolysaccharide. We inhibited glycolysis, activated AMPK or inhibited mTOR in granulosa cells isolated from 4-8mm and from > 8.5 mm diameter ovarian follicles, and then challenged the cells with lipopolysaccharide and measured the production of interleukins IL-1α, IL-1ß, and IL-8. We found that inhibiting glycolysis with 2-deoxy-d-glucose reduced lipopolysaccharide-stimulated IL-1α > 80%, IL-1ß > 90%, and IL-8 > 65% in granulosa cells from 4-8 mm and from > 8.5 mm diameter ovarian follicles. Activating AMPK with AICAR also reduced lipopolysaccharide-stimulated IL-1α > 60%, IL-1ß > 75%, and IL-8 > 20%, and shortened the duration of lipopolysaccharide-stimulated phosphorylation of the mitogen-activated protein kinase ERK1/2 and JNK. However, only the mTOR inhibitor Torin 1, and not rapamycin, reduced lipopolysaccharide-stimulated IL-1α and IL-1ß. In conclusion, manipulating granulosa cell energy metabolism with a glycolysis inhibitor, an AMPK activator, or an mTOR inhibitor, limited inflammatory responses to lipopolysaccharide. Our findings imply that energy stress compromises ovarian follicle immune defences.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Células da Granulosa/metabolismo , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Folículo Ovariano/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Bovinos , Feminino , Glicólise , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/imunologia , Imunidade Inata , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/imunologia
11.
Biol Reprod ; 104(3): 669-683, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330929

RESUMO

Bovine endometrium consists of epithelial and stromal cells that respond to conceptus interferon tau (IFNT), the maternal recognition of pregnancy (MRP) signal, by increasing expression of IFN-stimulated genes (ISGs). Endometrial epithelial and stromal-cell-specific ISGs are largely unknown but hypothesized to have essential functions during pregnancy establishment. Bovine endometrial epithelial cells were cultured in inserts above stromal fibroblast (SF) cells for 6 h in medium alone or with IFNT. The epithelial and SF transcriptomic response was analyzed separately using RNA sequencing and compared to a list of 369 DEGs recently identified in intact bovine endometrium in response to elongating bovine conceptuses and IFNT. Bovine endometrial epithelial and SF shared 223 and 70 DEGs in common with the list of 369 endometrial DEGs. Well-known ISGs identified in the epithelial and SF were ISG15, MX1, MX2, and OAS2. DEGs identified in the epithelial but not SF included a number of IRF molecules (IRF1, IRF2, IRF3, and IRF8), mitochondria SLC transporters (SLC25A19, SLC25A28, and SLC25A30), and a ghrelin receptor. Expression of ZC3HAV1, an anti-retroviral gene, increased specifically within the SF. Gene ontology analysis identified the type I IFN signaling pathway and activation of nuclear factor kappa B transcription factors as biological processes associated with the epithelial cell DEGs. This study has identified biologically relevant IFNT-stimulated genes within specific endometrial cell types. The findings provide critical information regarding the effects of conceptus IFNT on specific endometrial compartments during early developmental processes in cattle.


Assuntos
Bovinos/fisiologia , Implantação do Embrião/fisiologia , Endométrio/citologia , Células Epiteliais/metabolismo , Interferon Tipo I/metabolismo , Proteínas da Gravidez/metabolismo , Células Estromais/fisiologia , Animais , Técnicas de Cocultura , Embrião de Mamíferos/fisiologia , Feminino , Fibroblastos , Regulação da Expressão Gênica/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Grelina , Ovinos , Transcriptoma
12.
FASEB Bioadv ; 2(8): 506-520, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32821881

RESUMO

Postpartum uterine infection reduces fertility in dairy cattle; however, the mechanisms of uterine infection-mediated infertility are unknown. Paradoxically, infection-induced infertility persists after the resolution of disease. Oocytes are a finite resource, which are present at various stages of development during uterine infection. It is likely that oocyte development is influenced by uterine infection-induced changes to the follicular microenvironment. To better understand the impact of infection on oocyte quality we employed global transcriptomics of oocytes collected from heifers after receiving intrauterine infusion of pathogenic Escherichia coli and Trueperella pyogenes. We hypothesized that the oocyte transcriptome would be altered in response to intrauterine infection. A total of 452 differentially expressed genes were identified in oocytes collected from heifers 4 days after bacteria infusion compared to vehicle infusion, while 539 differentially expressed genes were identified in oocytes collected from heifers 60 days after bacteria infusion. Only 42 genes were differentially expressed in bacteria-infused heifers at both Day 4 and Day 60. Interferon, HMGB1, ILK, IL-6, and TGF-beta signaling pathways were downregulated in oocytes collected at Day 4 from bacteria-infused heifers, while interferon, ILK, and IL-6 signaling were upregulated in oocytes collected at Day 60 from bacteria-infused heifers. These data suggest that bacterial infusion alters the oocyte transcriptome differently at Day 4 and Day 60, suggesting different follicle stages are susceptible to damage. Characterizing the long-term impacts of uterine infection on the oocyte transcriptome aids in our understanding of how infection causes infertility in dairy cattle.

13.
Reproduction ; 160(1): 93-107, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32422601

RESUMO

Infection of the postpartum uterus with pathogenic bacteria is associated with infertility months later in dairy cattle. However, it is unclear whether these bacterial infections lead to long-term changes in the reproductive tract that might help explain this infertility. Here we tested the hypothesis that infusion of pathogenic bacteria into the uterus leads to changes in the transcriptome of the reproductive tract 3 months later. We used virgin Holstein heifers to avoid potential confounding effects of periparturient problems, lactation, and negative energy balance. Animals were infused intrauterine with endometrial pathogenic bacteria Escherichia coli and Trueperella pyogenes (n = 4) and compared with control animals (n = 6). Three months after infusion, caruncular and intercaruncular endometrium, isthmus and ampulla of the oviduct, and granulosa cells from ovarian follicles >8 mm diameter were profiled by RNA sequencing. Bacterial infusion altered the transcriptome of all the tissues when compared with control. Most differentially expressed genes were tissue specific, with 109 differentially expressed genes unique to caruncular endometrium, 57 in intercaruncular endometrium, 65 in isthmus, 298 in ampulla, and 83 in granulosa cells. Surprisingly, despite infusing bacteria into the uterus, granulosa cells had more predicted upstream regulators of differentially expressed genes than all the other tissues combined. In conclusion, there were changes in the transcriptome of the endometrium, oviduct and even granulosa cells, 3 months after intrauterine infusion of pathogenic bacteria. These findings imply that long-term changes throughout the reproductive tract could contribute to infertility after bacterial infections of the uterus.


Assuntos
Doenças dos Bovinos/patologia , Endométrio/patologia , Infecções por Escherichia coli/complicações , Reprodução , Transcriptoma , Útero/patologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Endométrio/metabolismo , Endométrio/microbiologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Feminino , Útero/metabolismo , Útero/microbiologia
14.
PLoS One ; 15(3): e0219275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163417

RESUMO

Pathogenic bacteria often damage tissues by secreting toxins that form pores in cell membranes, and the most common pore-forming toxins are cholesterol-dependent cytolysins. During bacterial infections, glutamine becomes a conditionally essential amino acid, and glutamine is an important nutrient for immune cells. However, the role of glutamine in protecting tissue cells against pore-forming toxins is unclear. Here we tested the hypothesis that glutamine supports the protection of tissue cells against the damage caused by cholesterol-dependent cytolysins. Stromal and epithelial cells were sensitive to damage by the cholesterol-dependent cytolysins, pyolysin and streptolysin O, as determined by leakage of potassium and lactate dehydrogenase from cells, and reduced cell viability. However, glutamine deprivation increased the leakage of lactate dehydrogenase and reduced the viability of cells challenged with cholesterol-dependent cytolysins. Without glutamine, stromal cells challenged with pyolysin leaked lactate dehydrogenase (control vs. pyolysin, 2.6 ± 0.6 vs. 34.4 ± 4.5 AU, n = 12), which was more than three-fold the leakage from cells supplied with 2 mM glutamine (control vs. pyolysin, 2.2 ± 0.3 vs. 9.4 ± 1.0 AU). Glutamine cytoprotection did not depend on glutaminolysis, replenishing the Krebs cycle via succinate, changes in cellular cholesterol, or regulators of cell metabolism (AMPK and mTOR). In conclusion, although the mechanism remains elusive, we found that glutamine supports the protection of tissue cells against the damage caused by cholesterol-dependent cytolysins from pathogenic bacteria.


Assuntos
Colesterol/metabolismo , Citoproteção/efeitos dos fármacos , Citotoxinas/toxicidade , Glutamina/farmacologia , Animais , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Bovinos , Células HeLa , Proteínas Hemolisinas/toxicidade , Humanos , L-Lactato Desidrogenase/metabolismo , Estreptolisinas/toxicidade , Células Estromais/efeitos dos fármacos
16.
Theriogenology ; 150: 158-165, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31973964

RESUMO

Up to forty percent of dairy cows develop metritis or endometritis when pathogenic bacteria infect the uterus after parturition. However, resilient cows remain healthy even when exposed to the same pathogens. Here, we provide a perspective on the mechanisms that dairy cows use to prevent postpartum uterine disease. We suggest that resilient cows prevent the development of uterine disease using the three complementary defensive strategies of avoiding, tolerating and resisting infection with pathogenic bacteria. Avoidance maintains health by limiting the exposure to pathogens. Avoidance mechanisms include intrinsic behaviors to reduce the risk of infection by avoiding pathogens or infected animals, perhaps signaled by the fetid odor of uterine disease. Tolerance improves health by limiting the tissue damage caused by the pathogens. Tolerance mechanisms include neutralizing bacterial toxins, protecting cells against damage, enhancing tissue repair, and reprogramming metabolism. Resistance improves health by limiting the pathogen burden. Resistance mechanisms include inflammation driven by innate immunity and adaptive immunity, with the aim of killing and eliminating pathogenic bacteria. Farmers can also help cows prevent the development of postpartum uterine disease by avoiding trauma to the genital tract, reducing stress, and feeding animals appropriately during the transition period. Understanding the mechanisms of avoidance, tolerance and resistance to pathogens will inform strategies to generate resilient animals and prevent uterine disease.


Assuntos
Doenças dos Bovinos/microbiologia , Doenças Uterinas/veterinária , Animais , Bovinos , Doenças dos Bovinos/imunologia , Suscetibilidade a Doenças/veterinária , Feminino , Período Pós-Parto , Doenças Uterinas/imunologia , Doenças Uterinas/microbiologia
17.
Mol Reprod Dev ; 86(12): 1909-1920, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31663199

RESUMO

Communication between the oocyte and cumulus facilitates oocyte growth, cell cycle regulation, and metabolism. This communication is mediated by direct contact between oocytes and cumulus cells, and soluble secreted molecules. Secreted molecules involved in this process are known inflammatory mediators. Lipopolysaccharide (LPS) is detected in follicular fluid and is associated with reduced fertility, whereas accumulation of inflammatory mediators in follicular fluid, including tumor necrosis factor-α (TNF-α), is associated with female infertility. Maturation of oocytes in the presence of LPS or TNF-α reduces meiotic maturation and the capacity to develop to the blastocyst. Here we evaluated the abundance of 92 candidate genes involved immune function, epigenetic modifications, embryo development, oocyte secreted factors, apoptosis, cell cycle, and cell signaling in bovine cumulus cells or zona-free oocytes after exposure to LPS or TNF-α during in vitro maturation. We hypothesize that LPS or TNF-α will alter the abundance of transcripts in oocytes and cumulus cell in a cell type dependent manner. Exposure to LPS altered abundance of 31 transcripts in oocytes (including ACVR1V, BMP15, DNMT3A) and 12 transcripts in cumulus cells (including AREG, FGF4, PIK3IP1). Exposure to TNF-α altered 1 transcript in oocytes (IGF2) and 4 transcripts in cumulus cells (GJA1, PLD2, PTGER4, STAT1). Cumulus expansion was reduced after exposure to LPS or TNF-α. Exposing COCs to LPS had a marked effect on expression of targeted transcripts in oocytes. We propose that altered oocyte transcript abundance is associated with reduced meiotic maturation and embryo development observed in oocytes cultured in LPS or TNF-α.


Assuntos
Células do Cúmulo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Meiose/efeitos dos fármacos , Oócitos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Bovinos , Células do Cúmulo/citologia , Feminino , Oócitos/citologia
18.
Reproduction ; 158(1): 35-46, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30933928

RESUMO

Metritis is associated with reduced fertility in dairy cows, but the mechanisms are unclear because the disease resolves several weeks before insemination. One hypothesis is that metritis causes persistent changes in granulosa cells during follicle development, which might be evident in the transcriptome of granulosa cells from dominant follicles weeks after parturition. To test this hypothesis, we collected the follicular fluid and granulosa cells from dominant follicles 63 days post partum from cows previously diagnosed with metritis, at least 6 weeks after resolution of the disease and from cows not diagnosed with metritis (control cows). Bacterial lipopolysaccharide was detected in follicular fluid, and concentrations were associated with follicular fluid IL-8 and glucose concentrations. Transcriptome analysis using RNAseq revealed 177 differentially expressed genes in granulosa cells collected from cows that had metritis compared with control cows. The most upregulated genes were ITLN1, NCF2, CLRN3, FSIP2 and ANKRD17, and the most downregulated genes were ACSM1, NR4A2, GHITM, CBARP and NR1I3. Pathway analysis indicated that the differentially expressed genes were involved with immune function, cell-cell communication, cell cycle and cellular metabolism. Predicted upstream regulators of the differentially expressed genes included NFκB, IL-21 and lipopolysaccharide, which are associated with infection and immunity. Our data provide evidence for a persistent effect of metritis on the transcriptome of granulosa cells in ovarian follicles after the resolution of disease.


Assuntos
Doenças dos Bovinos/genética , Líquido Folicular/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Transcriptoma , Doenças Uterinas/veterinária , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Feminino , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Doenças Uterinas/genética , Doenças Uterinas/metabolismo
19.
Biomed Microdevices ; 21(2): 36, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923927

RESUMO

Infections of the female reproductive tract are a major cause of morbidity and mortality in humans, requiring significant investment to sustain treatment and representing a major challenge to health. The increasing prevalence of bacterial resistance, and an almost complete absence of new antibiotic therapies for the past five decades, mean there is a desperate need for novel approaches to the treatment of bacterial infections. Within the present study, we demonstrate the effective ex vivo treatment of bacterial infection of the female reproductive tract using a controlled-release, liquid crystal-based platform. Liquid crystal encapsulation of ciprofloxacin significantly enhanced its bactericidal efficacy and reduced cell toxicity. Liquid crystal structures are low-cost, simple to manufacture and provide a sustained-release profile of encapsulated ciprofloxacin. Treatment of Escherichia coli infected reproductive tract epithelial cells and whole organ cultures with liquid crystal encapsulated ciprofloxacin proved to be an effective strategy for reducing bacterial load and reproductive tract inflammatory responses to infection. These data suggest that such an approach could provide an efficacious treatment modality for enhancing the effectiveness of current antibiotic therapies.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Portadores de Fármacos/química , Cristais Líquidos/química , Infecções do Sistema Genital/tratamento farmacológico , Antibacterianos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/uso terapêutico , Portadores de Fármacos/toxicidade , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Feminino , Células HeLa , Humanos , Cristais Líquidos/toxicidade , Testes de Sensibilidade Microbiana
20.
J Dairy Sci ; 102(3): 2686-2697, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30692014

RESUMO

Bacterial infection of the uterus causes clinical endometritis in 15 to 20% of postpartum dairy cows and reduces fertility, even after the resolution of disease. However, it is difficult to disentangle the mechanisms linking reduced fertility with endometritis because cows have multiple confounding postpartum conditions. The aim of the present experiment was to develop an in vivo model of clinical endometritis in Holstein heifers using pathogenic Escherichia coli and Trueperella pyogenes. Estrous cycles of heifers were synchronized using a 5-d Co-Synch protocol, and subsequently received exogenous progesterone to elevate circulating progesterone at the time of uterine infusion. Endometrial scarification was performed before uterine infusion of live pathogenic Escherichia coli and Trueperella pyogenes, or sterile vehicle. Effects of infusion were evaluated by measuring rectal temperature, plasma haptoglobin, hematology, grading pus in the vaginal mucus, quantifying 16S rRNA in vaginal mucus, and transrectal ultrasonography. Bacterial infusion increased the median vaginal mucus to grade 2 by d 3 postinfusion, and to grade 3 from d 4 to 6 postinfusion. Control heifers maintained a median vaginal mucus grade ≤1 from d 1 to 6. Transrectal ultrasound revealed the accumulation of echogenic fluid in the uterus of heifers following bacterial infusion, which was absent in control heifers. Total 16S rRNA in vaginal mucus was elevated in bacteria-infused heifers compared with control heifers at d 5. Rectal temperature was increased in bacteria-infused heifers. Plasma haptoglobin, general health, and appetite did not differ between groups. As indicated by increased vaginal mucus grade after bacterial infusion and absence of systemic signs of illness, this model successfully induced symptoms resembling clinical endometritis in virgin Holstein heifers. The model allows the isolation of effects of uterine disease on fertility from confounding factors that can occur during the postpartum period in dairy cows.


Assuntos
Actinomycetaceae , Infecções por Actinomycetales/veterinária , Doenças dos Bovinos/microbiologia , Endometrite/veterinária , Infecções por Escherichia coli/veterinária , Animais , Líquidos Corporais/diagnóstico por imagem , Bovinos , Modelos Animais de Doenças , Endometrite/microbiologia , Endometrite/fisiopatologia , Endométrio , Escherichia coli , Feminino , Muco/química , Transtornos Puerperais , RNA Ribossômico 16S/análise , Ultrassonografia/veterinária , Doenças Uterinas/microbiologia , Doenças Uterinas/fisiopatologia , Útero/diagnóstico por imagem , Útero/fisiopatologia , Vagina/química , Descarga Vaginal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...