Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(9): e1010809, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054235

RESUMO

Acinetobacter baumannii is an opportunistic pathogen and an emerging global health threat. Within healthcare settings, major presentations of A. baumannii include bloodstream infections and ventilator-associated pneumonia. The increased prevalence of ventilated patients during the COVID-19 pandemic has led to a rise in secondary bacterial pneumonia caused by multidrug resistant (MDR) A. baumannii. Additionally, due to its MDR status and the lack of antimicrobial drugs in the development pipeline, the World Health Organization has designated carbapenem-resistant A. baumannii to be its priority critical pathogen for the development of novel therapeutics. To better inform the design of new treatment options, a comprehensive understanding of how the host contains A. baumannii infection is required. Here, we investigate the innate immune response to A. baumannii by assessing the impact of infection on host gene expression using NanoString technology. The transcriptional profile observed in the A. baumannii infected host is characteristic of Gram-negative bacteremia and reveals expression patterns consistent with the induction of nutritional immunity, a process by which the host exploits the availability of essential nutrient metals to curtail bacterial proliferation. The gene encoding for lipocalin-2 (Lcn2), a siderophore sequestering protein, was the most highly upregulated during A. baumannii bacteremia, of the targets assessed, and corresponds to robust LCN2 expression in tissues. Lcn2-/- mice exhibited distinct organ-specific gene expression changes including increased transcription of genes involved in metal sequestration, such as S100A8 and S100A9, suggesting a potential compensatory mechanism to perturbed metal homeostasis. In vitro, LCN2 inhibits the iron-dependent growth of A. baumannii and induces iron-regulated gene expression. To elucidate the role of LCN2 in infection, WT and Lcn2-/- mice were infected with A. baumannii using both bacteremia and pneumonia models. LCN2 was not required to control bacterial growth during bacteremia but was protective against mortality. In contrast, during pneumonia Lcn2-/- mice had increased bacterial burdens in all organs evaluated, suggesting that LCN2 plays an important role in inhibiting the survival and dissemination of A. baumannii. The control of A. baumannii infection by LCN2 is likely multifactorial, and our results suggest that impairment of iron acquisition by the pathogen is a contributing factor. Modulation of LCN2 expression or modifying the structure of LCN2 to expand upon its ability to sequester siderophores may thus represent feasible avenues for therapeutic development against this pathogen.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriemia , COVID-19 , Pneumonia Bacteriana , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Animais , Carbapenêmicos/farmacologia , Humanos , Imunidade Inata , Ferro/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Camundongos , Pandemias , Sideróforos/metabolismo
2.
J Bacteriol ; 203(24): e0045821, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606375

RESUMO

Respiration-deficient Staphylococcus aureus small-colony variants (SCVs) frequently cause persistent infections, which necessitates they acquire iron, yet how SCVs obtain iron remains unknown. To address this, we created a stable hemB mutant from S. aureus USA300 strain LAC. The hemB SCV utilized exogenously supplied hemin but was attenuated for growth under conditions of iron starvation. Transcriptome sequencing (RNA-seq) showed that both wild-type (WT) S. aureus and the hemB mutant sense and respond to iron starvation; however, growth assays show that the hemB mutant is defective for siderophore-mediated iron acquisition. Indeed, the hemB SCV demonstrated limited utilization of endogenous staphyloferrin B or exogenously provided staphyloferrin A, deferoxamine mesylate (Desferal), and epinephrine. Direct measurement of intracellular ATP in hemB and WT S. aureus revealed that both strains can generate comparable levels of ATP during exponential growth, suggesting defects in ATP production cannot account for the inability to efficiently utilize siderophores. Defective siderophore utilization by hemB bacteria was also evident in vivo, as administration of Desferal failed to promote hemB bacterial growth in every organ analyzed except for the kidneys. In support of the hypothesis that S. aureus accesses heme in kidney abscesses, in vitro analyses revealed that increased hemin availability enables hemB bacteria to utilize siderophores for growth when iron availability is restricted. Taken together, our data support the conclusion that hemin is used not only as an iron source itself but also as a nutrient that promotes utilization of siderophore-iron complexes. IMPORTANCE S. aureus small-colony variants (SCVs) are associated with chronic recurrent infection and worsened clinical outcome. SCVs persist within the host despite administration of antibiotics. This study yields insight into how S. aureus SCVs acquire iron, which during infection of a host is a difficult-to-acquire metal nutrient. Under hemin-limited conditions, hemB S. aureus is impaired for siderophore-dependent growth, and in agreement, murine infection indicates that hemin-deficient SCVs meet their nutritional requirement for iron through utilization of hemin. Importantly, we demonstrate that hemB SCVs rely upon hemin as a nutrient to promote siderophore utilization. Therefore, perturbation of heme biosynthesis and/or utilization represents a viable to strategy to mitigate the ability of SCV bacteria to acquire siderophore-bound iron during infection.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/metabolismo , Ferro/administração & dosagem , Sideróforos/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Variação Genética , Ferro/metabolismo
3.
PLoS Pathog ; 16(10): e1008995, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075115

RESUMO

Acinetobacter baumannii is an emerging pathogen that poses a global health threat due to a lack of therapeutic options for treating drug-resistant strains. In addition to acquiring resistance to last-resort antibiotics, the success of A. baumannii is partially due to its ability to effectively compete with the host for essential metals. Iron is fundamental in shaping host-pathogen interactions, where the host restricts availability of this nutrient in an effort to curtail bacterial proliferation. To circumvent restriction, pathogens possess numerous mechanisms to obtain iron, including through the use of iron-scavenging siderophores. A. baumannii elaborates up to ten distinct siderophores, encoded from three different loci: acinetobactin and pre-acinetobactin (collectively, acinetobactin), baumannoferrins A and B, and fimsbactins A-F. The expression of multiple siderophores is common amongst bacterial pathogens and often linked to virulence, yet the collective contribution of these siderophores to A. baumannii survival and pathogenesis has not been investigated. Here we begin dissecting functional redundancy in the siderophore-based iron acquisition pathways of A. baumannii. Excess iron inhibits overall siderophore production by the bacterium, and the siderophore-associated loci are uniformly upregulated during iron restriction in vitro and in vivo. Further, disrupting all of the siderophore biosynthetic pathways is necessary to drastically reduce total siderophore production by A. baumannii, together suggesting a high degree of functional redundancy between the metabolites. By contrast, inactivation of acinetobactin biosynthesis alone impairs growth on human serum, transferrin, and lactoferrin, and severely attenuates survival of A. baumannii in a murine bacteremia model. These results suggest that whilst A. baumannii synthesizes multiple iron chelators, acinetobactin is critical to supporting growth of the pathogen on host iron sources. Given the acinetobactin locus is highly conserved and required for virulence of A. baumannii, designing therapeutics targeting the biosynthesis and/or transport of this siderophore may represent an effective means of combating this pathogen.


Assuntos
Acinetobacter baumannii/patogenicidade , Imidazóis/metabolismo , Oxazóis/metabolismo , Sideróforos/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Animais , Vias Biossintéticas , Feminino , Genes Bacterianos , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica , Virulência
4.
Sci Adv ; 6(30): eabb5614, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832672

RESUMO

Peptidoglycan (PG) is essential in most bacteria. Thus, it is often targeted by various assaults, including interbacterial attacks via the type VI secretion system (T6SS). Here, we report that the Gram-negative bacterium Acinetobacter baumannii strain ATCC 17978 produces, secretes, and incorporates the noncanonical d-amino acid d-lysine into its PG during stationary phase. We show that PG editing increases the competitiveness of A. baumannii during bacterial warfare by providing immunity against peptidoglycan-targeting T6SS effectors from various bacterial competitors. In contrast, we found that d-Lys production is detrimental to pathogenesis due, at least in part, to the activity of the human enzyme d-amino acid oxidase (DAO), which degrades d-Lys producing H2O2 toxic to bacteria. Phylogenetic analyses indicate that the last common ancestor of A. baumannii had the ability to produce d-Lys. However, this trait was independently lost multiple times, likely reflecting the evolution of A. baumannii as a human pathogen.


Assuntos
Acinetobacter baumannii , Guerra Biológica , Acinetobacter baumannii/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peptidoglicano/metabolismo , Filogenia
5.
Proc Natl Acad Sci U S A ; 116(44): 21980-21982, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611408

RESUMO

Siderophores, iron-scavenging small molecules, are fundamental to bacterial nutrient metal acquisition and enable pathogens to overcome challenges imposed by nutritional immunity. Multimodal imaging mass spectrometry allows visualization of host-pathogen iron competition, by mapping siderophores within infected tissue. We have observed heterogeneous distributions of Staphylococcus aureus siderophores across infectious foci, challenging the paradigm that the vertebrate host is a uniformly iron-depleted environment to invading microbes.


Assuntos
Sideróforos/análise , Staphylococcus aureus/patogenicidade , Abscesso/microbiologia , Animais , Citratos/análise , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Camundongos , Ornitina/análogos & derivados , Ornitina/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
6.
Curr Opin Immunol ; 60: 1-9, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31063946

RESUMO

Transition metal ions are essential to bacterial pathogens and their hosts alike but are harmful in excess. In an effort to curtail the replication of intracellular bacteria, host phagocytes exploit both the essentiality and toxicity of transition metals. In the paradigmatic description of nutritional immunity, iron and manganese are withheld from phagosomes to starve microbial invaders of these nutrients. Conversely, the destructive properties of copper and zinc appear to be harnessed by phagocytes, where these metals are delivered in excess to phagosomes to intoxicate internalized bacteria. Here, we briefly summarize key players in metal withholding from intracellular pathogens, before focusing on recent findings supporting the function of copper and zinc as phagocyte antimicrobial effectors. The mechanisms of copper and zinc toxicity are explored, along with strategies employed by intracellular bacterial pathogens to avoid killing by these metals.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cobre/farmacologia , Fagócitos/efeitos dos fármacos , Zinco/farmacologia , Antibacterianos/química , Bactérias/imunologia , Cobre/química , Fagócitos/imunologia , Zinco/química
7.
J Org Chem ; 84(10): 6459-6464, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31039303

RESUMO

Here, we report the first total synthesis of hinduchelins A-D, a family of nontoxic catechol derivatives from Streptoalloteichus hindustanus, possessing a druglike chemotype and modest iron-chelating ability. A concise synthesis was developed employing methyl 5-methyloxazole-4-carboxylate as a single starting material to provide hinduchelins A-D (and unnatural analogues) in only four steps and 5-15% overall yields; moreover, the stereochemistry of hinduchelin A was reassigned from ( S) to ( R). Biological evaluation confirmed that natural and unnatural hinduchelins are weak iron chelators (siderophores).


Assuntos
Catecóis/química , Catecóis/síntese química , Quelantes de Ferro/química , Quelantes de Ferro/síntese química , Actinobacteria/química , Técnicas de Química Sintética , Estereoisomerismo
8.
Methods Mol Biol ; 1946: 289-305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798564

RESUMO

Acinetobacter baumannii is a Gram-negative opportunistic pathogen and a leading cause of ventilator-associated pneumonia. Murine models of A. baumannii lung infection allow researchers to experimentally assess A. baumannii virulence and host response. Intranasal administration of A. baumannii models acute lung infection. This chapter describes the methods to test A. baumannii virulence in a murine model of lung infection, including assessing the competitive index of a bacterial mutant and the associated inflammatory responses.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/fisiologia , Pneumonia Bacteriana/microbiologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/patogenicidade , Doença Aguda , Animais , Carga Bacteriana , Biópsia , Modelos Animais de Doenças , Citometria de Fluxo , Imunidade , Imuno-Histoquímica , Camundongos , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Virulência
9.
Nat Commun ; 10(1): 775, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770821

RESUMO

Staphylococcus aureus is a significant cause of human infection. Here, we demonstrate that mutations in the transcriptional repressor of purine biosynthesis, purR, enhance the pathogenic potential of S. aureus. Indeed, systemic infection with purR mutants causes accelerated mortality in mice, which is due to aberrant up-regulation of fibronectin binding proteins (FnBPs). Remarkably, purR mutations can arise upon exposure of S. aureus to stress, such as an intact immune system. In humans, naturally occurring anti-FnBP antibodies exist that, while not protective against recurrent S. aureus infection, ostensibly protect against hypervirulent S. aureus infections. Vaccination studies support this notion, where anti-Fnb antibodies in mice protect against purR hypervirulence. These findings provide a novel link between purine metabolism and virulence in S. aureus.


Assuntos
Purinas/biossíntese , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Transporte/metabolismo , Feminino , Fibronectinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética , Ligação Proteica , Staphylococcus aureus/genética , Virulência/genética
10.
Org Lett ; 21(3): 679-682, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645132

RESUMO

A convergent total synthesis of the siderophore coelichelin is described. The synthetic route also provided access to acetyl coelichelin and other congeners of the parent siderophore. The synthetic products were evaluated for their ability to bind ferric iron and promote growth of a siderophore-deficient strain of the Gram-negative bacterium Pseudomonas aeruginosa under iron restriction conditions. The results of these studies indicate coelichelin and several derivatives serve as ferric iron delivery vehicles for P. aeruginosa.


Assuntos
Ferro/metabolismo , Oligopeptídeos/síntese química , Oligopeptídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/síntese química , Sideróforos/metabolismo , Sondas Moleculares/síntese química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sondas Moleculares/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Sideróforos/química , Sideróforos/farmacologia
11.
Nat Chem Biol ; 14(6): 609-617, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769740

RESUMO

Serine hydrolases play diverse roles in regulating host-pathogen interactions in a number of organisms, yet few have been characterized in the human pathogen Staphylococcus aureus. Here we describe a chemical proteomic screen that identified ten previously uncharacterized S. aureus serine hydrolases that mostly lack human homologs. We termed these enzymes fluorophosphonate-binding hydrolases (FphA-J). One hydrolase, FphB, can process short fatty acid esters, exhibits increased activity in response to host cell factors, is located predominantly on the bacterial cell surface in a subset of cells, and is concentrated in the division septum. Genetic disruption of fphB confirmed that the enzyme is dispensable for bacterial growth in culture but crucial for establishing infection in distinct sites in vivo. A selective small molecule inhibitor of FphB effectively reduced infectivity in vivo, suggesting that it may be a viable therapeutic target for the treatment or management of Staphylococcus infections.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sítios de Ligação , Clonagem Molecular , Ácidos Graxos/química , Técnicas Genéticas , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Hidrólise , Cinética , Camundongos , Testes de Sensibilidade Microbiana , Organofosfonatos/química , Filogenia , Proteômica/métodos , Serina/química , Infecções Estafilocócicas , Virulência , Fatores de Virulência/genética
12.
PLoS Genet ; 14(1): e1007159, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357354

RESUMO

Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.


Assuntos
Aminoácidos de Cadeia Ramificada/biossíntese , Proteínas de Bactérias/fisiologia , Isoleucina/fisiologia , Proteínas Repressoras/fisiologia , Staphylococcus aureus/metabolismo , Adaptação Biológica/genética , Regulação para Baixo/genética , Meio Ambiente , Regulação Bacteriana da Expressão Gênica , Leucina/química , Redes e Vias Metabólicas/genética , Organismos Geneticamente Modificados , Proteínas Repressoras/química , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência/genética
13.
Microbiol Spectr ; 4(2)2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27227297

RESUMO

Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.


Assuntos
Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Ferro/metabolismo , Animais , Humanos
14.
FEMS Microbiol Rev ; 39(4): 592-630, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25862688

RESUMO

Iron is a versatile redox-active catalyst and a required cofactor within a diverse array of biological processes. To almost all organisms, iron is both essential and potentially toxic, where homeostatic concentrations must be stringently maintained. Within the iron-restricted host, the survival and proliferation of microbial invaders is contingent upon exploiting the host iron pool. Bacteria express a multitude of complex, and often redundant means of acquiring iron, including surface-associated heme-uptake pathways, high affinity iron-scavenging siderophores and transporters of free inorganic iron. Within the last decade, our understanding of iron acquisition by Gram-positive pathogens has expanded substantively, from the discovery of the iron-regulated surface-determinant pathway and numerous unique siderophores through to the detailed elucidation of heme-iron extraction, and heme and siderophore coordination and transfer. This review provides a comprehensive summary of the iron acquisition strategies of notorious Gram-positive pathogens and highlights how both conserved and distinct tactics for acquiring iron contribute to the pathophysiology of these bacteria. Further, a focus on recent structural and mechanistic studies details how these iron acquisition systems may be exploited in the development of novel therapeutics.


Assuntos
Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Ferro/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Positivas/patogenicidade , Estrutura Terciária de Proteína
15.
FEBS Lett ; 589(6): 730-7, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25680529

RESUMO

A paucity of information exists concerning the mechanism(s) by which bacteria secrete siderophores into the extracellular compartment. We investigated the role of SfaA and SbnD, two major facilitator superfamily (MFS)-type efflux proteins, in the secretion of the Staphylococcus aureus siderophores staphyloferrin A (SA) and staphyloferrin B (SB), respectively. Deletion of sfaA resulted in a drastic reduction of SA secreted into the supernatant with a corresponding accumulation of SA in the cytoplasm and a significant growth defect in cells devoid of SB synthesis. In contrast, sbnD mutants showed transiently lowered levels of secreted SB, suggesting the involvement of additional efflux mechanisms.


Assuntos
Proteínas de Bactérias/fisiologia , Citratos/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Ornitina/análogos & derivados , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Ornitina/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
16.
Infect Immun ; 83(3): 1019-29, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25547798

RESUMO

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth of Staphylococcus aureus but also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment. S. aureus encodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all three brnQ paralogs so as to characterize their substrate specificities and their roles in growth in vitro and in vivo. We demonstrated that in the community-associated, methicillin-resistant S. aureus (CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that a brnQ2 mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression of brnQ1. In a murine infection model, the brnQ1 mutant was attenuated, but in contrast, brnQ2 mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhanced in vivo scavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus Resistente à Meticilina/metabolismo , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/microbiologia , Animais , Proteínas de Bactérias/genética , Transporte Biológico , Proteínas de Transporte/genética , Meios de Cultura/química , Humanos , Isoleucina/metabolismo , Rim/microbiologia , Rim/patologia , Cinética , Leucina/metabolismo , Fígado/microbiologia , Fígado/patologia , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Infecções Estafilocócicas/patologia , Especificidade por Substrato , Valina/metabolismo , Virulência
17.
J Biol Chem ; 289(49): 33797-807, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25336653

RESUMO

In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production.


Assuntos
Proteínas de Bactérias/química , Citrato (si)-Sintase/química , Proteínas Reguladoras de Ferro/química , Ferro/metabolismo , Staphylococcus aureus/química , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrato (si)-Sintase/classificação , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Citratos/biossíntese , Ciclo do Ácido Cítrico/genética , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Proteínas Reguladoras de Ferro/classificação , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ácido Oxaloacético/metabolismo , Fosfoenolpiruvato/metabolismo , Filogenia , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Staphylococcus aureus/enzimologia
18.
Mol Microbiol ; 92(4): 824-39, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24666349

RESUMO

Staphylococcus aureus elaborates two citrate-containing siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), that enhance growth under iron-restriction, yet, paradoxically, expression of the TCA cycle citrate synthase, CitZ, is downregulated during iron starvation. Iron starvation does, however, result in expression of SbnG, recently identified as a novel citrate synthase that is encoded from within the iron-regulated SB biosynthetic locus, suggesting an important role for SbnG in staphyloferrin production. We demonstrate that during growth of S. aureus in iron-restricted media containing glucose, SB is produced but, in contrast, SA production is severely repressed; accordingly, SB-deficient mutants grow poorly in these media. Hypothesizing that reduced TCA cycle activity hinders SA production, we show that a citZ mutant is capable of SB synthesis, but not SA synthesis, providing evidence that SbnG does not generate citrate for incorporation into SA. A citZ sbnG mutant synthesizes neither staphyloferrin, is severely compromised for growth in iron-restricted media, and is significantly more impaired for virulence than either of the single-deletion mutants. We propose that SB is the more important of the two siderophores for S. aureus insofar as it is synthesized, and supports iron-restricted growth, without need of TCA cycle activity.


Assuntos
Citrato (si)-Sintase/metabolismo , Citratos/metabolismo , Ferro/metabolismo , Ornitina/análogos & derivados , Sideróforos/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Ciclo do Ácido Cítrico , Meios de Cultura/química , Glucose/metabolismo , Ornitina/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento
19.
Microbiologyopen ; 3(2): 182-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24515974

RESUMO

Staphylococcus lugdunensis is both a commensal of humans and an opportunistic pathogen. Little is currently known about the molecular mechanisms underpinning the virulence of this bacterium. Here, we demonstrate that in contrast to S. aureus, S. lugdunensis makes neither staphyloferrin A (SA) nor staphyloferrin B (SB) in response to iron deprivation, owing to the absence of the SB gene cluster, and a large deletion in the SA biosynthetic gene cluster. As a result, the species grows poorly in serum-containing media, and this defect was complemented by introduction of the S. aureus SA gene cluster into S. lugdunensis. S. lugdunensis expresses the HtsABC and SirABC transporters for SA and SB, respectively; the latter gene set is found within the isd (heme acquisition) gene cluster. An isd deletion strain was significantly debilitated for iron acquisition from both heme and hemoglobin, and was also incapable of utilizing ferric-SB as an iron source, while an hts mutant could not grow on ferric-SA as an iron source. In iron-restricted coculture experiments, S. aureus significantly enhanced the growth of S. lugdunensis, in a manner dependent on staphyloferrin production by S. aureus, and the expression of the cognate transporters by S. lugdunensis.


Assuntos
Heme/metabolismo , Hemoglobinas/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus lugdunensis/crescimento & desenvolvimento , Staphylococcus lugdunensis/metabolismo , Deleção de Genes , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Staphylococcus aureus/genética , Staphylococcus lugdunensis/genética
20.
J Infect Dis ; 209(11): 1764-72, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24338348

RESUMO

Staphylococcus aureus is a Gram-positive pathogen responsible for tremendous morbidity and mortality. As with most bacteria, S. aureus requires iron to cause disease, and it can acquire iron from host hemoglobin. The current model for staphylococcal hemoglobin-iron acquisition proposes that S. aureus binds hemoglobin through the surface-exposed hemoglobin receptor IsdB. IsdB removes heme from bound hemoglobin and transfers this cofactor to other proteins of the Isd system, which import and degrade heme to release iron in the cytoplasm. Here we demonstrate that the individual components of the Isd system are required for growth on low nanomolar concentrations of hemoglobin as a sole source of iron. An in-depth study of hemoglobin binding by IsdB revealed key residues that are required for hemoglobin binding. Further, we show that these residues are necessary for heme extraction from hemoglobin and growth on hemoglobin as a sole iron source. These processes are found to contribute to the pathogenicity of S. aureus in a murine model of infection. Together these results build on the model for Isd-mediated hemoglobin binding and heme-iron acquisition during the pathogenesis of S. aureus infection.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Ligação Proteica/fisiologia , Staphylococcus aureus/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Variação Genética , Genoma Bacteriano , Humanos , Staphylococcus aureus/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...