Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(1): 343-356, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36550613

RESUMO

Activated microplates are widely used in biological assays and cell culture to immobilize biomolecules, either through passive physical adsorption or covalent cross-linking. Covalent attachment gives greater stability in complex biological mixtures. However, current multistep chemical activation methods add complexity and cost, require specific functional groups, and can introduce cytotoxic chemicals that affect downstream cellular applications. Here, we show a method for one-step linker-free activation of microplates by energetic ions from plasma for covalent immobilization of DNA and protein. Two types of energetic ion plasma treatment were shown to be effective: plasma immersion ion implantation (PIII) and plasma-activated coating (PAC). This is the first time that PIII and PAC have been reported in microwell plates with nonflat geometry. We confirm that the plasma treatment generates radical-activated surfaces at the bottom of wells despite potential shadowing from the walls. Comprehensive surface characterization studies were used to compare the PIII and PAC microplate surface composition, wettability, radical density, optical properties, stability, and biomolecule immobilization density. PAC plates were found to have more nitrogen and lower radical density and were more hydrophobic and more stable over 3 months than PIII plates. Optimal conditions were obtained for high-density DNA (PAC, 0 or 21% nitrogen, pH 3-4) and streptavidin (PAC, 21% nitrogen, pH 5-7) binding while retaining optical properties required for typical high-throughput biochemical microplate assays, such as low autofluorescence and high transparency. DNA hybridization and protein activity of immobilized molecules were confirmed. We show that PAC activation allows for high-density covalent immobilization of functional DNA and protein in a single step on both 96- and 384-well plates without specific linker chemistry. These microplates could be used in the future to bind other user-selected ligands in a wide range of applications, for example, for solid phase polymerase chain reaction and stem cell culture and differentiation.


Assuntos
DNA , Indicadores e Reagentes , Molhabilidade , Estreptavidina , Propriedades de Superfície
2.
Membranes (Basel) ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34940451

RESUMO

DNA nanotechnology provides methods for building custom membrane-interacting nanostructures with diverse functions, such as shaping membranes, tethering defined numbers of membrane proteins, and transmembrane nanopores. The modification of DNA nanostructures with hydrophobic groups, such as cholesterol, is required to facilitate membrane interactions. However, cholesterol-induced aggregation of DNA origami nanostructures remains a challenge. Aggregation can result in reduced assembly yield, defective structures, and the inhibition of membrane interaction. Here, we quantify the assembly yield of two cholesterol-modified DNA origami nanostructures: a 2D DNA origami tile (DOT) and a 3D DNA origami barrel (DOB), by gel electrophoresis. We found that the DOT assembly yield (relative to the no cholesterol control) could be maximised by reducing the number of cholesterols from 6 to 1 (2 ± 0.2% to 100 ± 2%), optimising the separation between adjacent cholesterols (64 ± 26% to 78 ± 30%), decreasing spacer length (38 ± 20% to 95 ± 5%), and using protective ssDNA 10T overhangs (38 ± 20% to 87 ± 6%). Two-step folding protocols for the DOB, where cholesterol strands are added in a second step, did not improve the yield. Detergent improved the yield of distal cholesterol configurations (26 ± 22% to 92 ± 12%), but samples re-aggregated after detergent removal (74 ± 3%). Finally, we confirmed functional membrane binding of the cholesterol-modified nanostructures. These findings provide fundamental guidelines to reducing the cholesterol-induced aggregation of membrane-interacting 2D and 3D DNA origami nanostructures, improving the yield of well-formed structures to facilitate future applications in nanomedicine and biophysics.

4.
Nucleic Acids Res ; 49(19): 10835-10850, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614184

RESUMO

Liposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. However, the optimal conditions to facilitate stable, high-yield DNA-lipid binding while allowing controlled switching by strand displacement are not known. Here, we characterized the effect of cholesterol arrangement, DNA structure, buffer and lipid composition on DNA-lipid binding and strand displacement. We observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent of lipid type, and increased with membrane cholesterol content. For simple motifs, binding yield was slightly higher for double-stranded DNA than single-stranded DNA. For larger DNA origami tiles, four to eight cholesterol modifications were optimal, while edge positions and longer spacers increased yield of lipid binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design guidelines for integrating strand displacement switching with lipid-binding DNA nanostructures. This paves the way for achieving dynamic control of membrane morphology, enabling broader applications in nanomedicine and biophysics.


Assuntos
DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Lipossomos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Colesterol/química , Colesterol/metabolismo , DNA/química , DNA de Cadeia Simples/química , Concentração de Íons de Hidrogênio , Cinética , Lipossomos/química , Cloreto de Magnésio/química , Cloreto de Magnésio/metabolismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Cloreto de Sódio/química , Cloreto de Sódio/metabolismo , Soluções , Termodinâmica
5.
Nat Commun ; 11(1): 5768, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188187

RESUMO

DNA origami, in which a long scaffold strand is assembled with a many short staple strands into parallel arrays of double helices, has proven a powerful method for custom nanofabrication. However, currently the design and optimization of custom 3D DNA-origami shapes is a barrier to rapid application to new areas. Here we introduce a modular barrel architecture, and demonstrate hierarchical assembly of a 100 megadalton DNA-origami barrel of ~90 nm diameter and ~250 nm height, that provides a rhombic-lattice canvas of a thousand pixels each, with pitch of ~8 nm, on its inner and outer surfaces. Complex patterns rendered on these surfaces were resolved using up to twelve rounds of Exchange-PAINT super-resolution microscopy. We envision these structures as versatile nanoscale pegboards for applications requiring complex 3D arrangements of matter, which will serve to promote rapid uptake of this technology in diverse fields beyond specialist groups working in DNA nanotechnology.


Assuntos
DNA/química , Imageamento Tridimensional , Conformação de Ácido Nucleico , Dimerização , Modelos Moleculares
6.
Genes (Basel) ; 10(12)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816934

RESUMO

Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes-aqueous droplets enclosed by a bilayer membrane-can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems.


Assuntos
Técnicas Biossensoriais , DNA/química , Bicamadas Lipídicas/química , Nanoestruturas/química , Nanotecnologia , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Proteínas de Membrana/química
7.
Biophys Rev ; 10(5): 1283-1293, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30280371

RESUMO

Structural DNA nanotechnology, in which Watson-Crick base pairing drives the formation of self-assembling nanostructures, has rapidly expanded in complexity and functionality since its inception in 1981. DNA nanostructures can now be made in arbitrary three-dimensional shapes and used to scaffold many other functional molecules such as proteins, metallic nanoparticles, polymers, fluorescent dyes and small molecules. In parallel, the field of dynamic DNA nanotechnology has built DNA circuits, motors and switches. More recently, these two areas have begun to merge-to produce switchable DNA nanostructures, which change state in response to their environment. In this review, we summarise switchable DNA nanostructures into two major classes based on response type: molecular actuation triggered by local chemical changes such as pH or concentration and external actuation driven by light, electric or magnetic fields. While molecular actuation has been well explored, external actuation of DNA nanostructures is a relatively new area that allows for the remote control of nanoscale devices. We discuss recent applications for DNA nanostructures where switching is used to perform specific functions-such as opening a capsule to deliver a molecular payload to a target cell. We then discuss challenges and future directions towards achieving synthetic nanomachines with complexity on the level of the protein machinery in living cells.

8.
Nat Nanotechnol ; 10(10): 892-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26322946

RESUMO

Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been demonstrated, we currently lack the tools to handle other types of synthetic polymers individually and thus the ability to utilize and study their single-molecule properties. Here we show that synthetic polymer wires containing short oligonucleotides that extend from each repeat can be made to assemble into arbitrary routings. The wires, which can be more than 200 nm in length, are soft and bendable, and the DNA strands allow individual polymers to self-assemble into predesigned routings on both two- and three-dimensional DNA origami templates. The polymers are conjugated and potentially conducting, and could therefore be used to create molecular-scale electronic or optical wires in arbitrary geometries.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Polímeros/química , DNA de Cadeia Simples/química , Nanoestruturas/ultraestrutura , Nanofios/química , Nanofios/ultraestrutura , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Polivinil/química
9.
ACS Nano ; 8(9): 8765-75, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25136758

RESUMO

DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg(2+)-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg(2+) to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable experimental data. Our study thus describes considerations that are vital for researchers undertaking in vitro tissue culture studies with DNA nanostructures and some potential solutions for ensuring that nanostructure integrity and functions are maintained during experiments.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Técnicas de Cultura de Tecidos/métodos , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Camundongos , Desnaturação de Ácido Nucleico , Fenótipo
10.
Nat Nanotechnol ; 7(3): 169-73, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22266636

RESUMO

Synthetic molecular motors can be fuelled by the hydrolysis or hybridization of DNA. Such motors can move autonomously and programmably, and long-range transport has been observed on linear tracks. It has also been shown that DNA systems can compute. Here, we report a synthetic DNA-based system that integrates long-range transport and information processing. We show that the path of a motor through a network of tracks containing four possible routes can be programmed using instructions that are added externally or carried by the motor itself. When external control is used we find that 87% of the motors follow the correct path, and when internal control is used 71% of the motors follow the correct path. Programmable motion will allow the development of computing networks, molecular systems that can sort and process cargoes according to instructions that they carry, and assembly lines that can be reconfigured dynamically in response to changing demands.


Assuntos
DNA/química , Nanotecnologia/instrumentação , Robótica/instrumentação , Biologia Sintética/instrumentação , Computadores Moleculares , DNA/metabolismo , Tecnologia de Fibra Óptica , Corantes Fluorescentes , Conformação de Ácido Nucleico , Espectrofotometria
11.
Nat Nanotechnol ; 6(3): 166-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21297627

RESUMO

Controlled motion at the nanoscale can be achieved by using Watson-Crick base-pairing to direct the assembly and operation of a molecular transport system consisting of a track, a motor and fuel, all made from DNA. Here, we assemble a 100-nm-long DNA track on a two-dimensional scaffold, and show that a DNA motor loaded at one end of the track moves autonomously and at a constant average speed along the full length of the track, a journey comprising 16 consecutive steps for the motor. Real-time atomic force microscopy allows direct observation of individual steps of a single motor, revealing mechanistic details of its operation. This precisely controlled, long-range transport could lead to the development of systems that could be programmed and routed by instructions encoded in the nucleotide sequences of the track and motor. Such systems might be used to create molecular assembly lines modelled on the ribosome.


Assuntos
DNA de Cadeia Simples/análise , DNA de Cadeia Simples/química , Microscopia de Força Atômica/métodos , Nanotecnologia/instrumentação , Pareamento de Bases , Sequência de Bases , Transporte Biológico , DNA/química , Estudos de Viabilidade , Modelos Moleculares , Movimento (Física) , Movimento , Nanoestruturas/química , Conformação de Ácido Nucleico , Observação , Mapeamento por Restrição/métodos , Propriedades de Superfície
12.
J Arthroplasty ; 11(6): 693-703, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8884445

RESUMO

With the extensive use of uncemented acetabular components in total hip arthroplasty, relocation of the hip center has become increasingly necessary to avoid bulk grafts and to promote contact between the porous prosthetic surface and bone. Compared with the anatomic hip center, superolateral relocation theoretically results in higher hip joint forces and has been shown in cemented acetabular components to result in an increased clinical failure rate. This study experimentally and analytically compared the hip joint forces in normal, superior, and superolateral hip center locations during both single-leg stance and stairclimbing, performing this comparison over a wide range of hip joint applied flexion moments. An advanced loading fixture was designed to allow any applied moment to be set independently of femoral position, incorporating all three major muscle groups active in stairclimbing position: extensors, abductors, and adductors. For all positions and moments tested, it was found that superolateral relocation caused significant increases in the total hip joint force, but did not affect the nonsagittal force component. Also, superior-only hip center relocation did not significantly affect the total joint force magnitudes or directions. The force increase on hip center lateralization can be attributed to a corresponding increase in the adduction moment. Results from the static analytical model developed supported these findings. The results of this study suggest that superolateral hip center relocation should be avoided and that superior-only relocation may be mechanically acceptable within the confines of the osseous anatomy of the acetabulum.


Assuntos
Articulação do Quadril/fisiologia , Fenômenos Biomecânicos , Prótese de Quadril , Humanos , Modelos Estruturais , Postura , Desenho de Prótese
13.
Proc Inst Mech Eng H ; 210(1): 65-8, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8663894

RESUMO

A test device has been developed and validated to simulate physiologic loading of the hip during stair climbing. Forces about the hip joint were measured in static simulations of stair climbing using simulated extensor, abductor and adductor muscle groups to support the joint. Femoral flexion angle (to model step length and height) and applied hip flexion moment (to model trunk lean) were varied to examine the effects of different loading conditions on the hip. In stair climbing the maximum total joint force was six times body weight at 34 degrees of femoral flexion and 60 N m of hip flexion moment. Joint forces increased with hip flexion moment and varied little with femoral flexion angle, except for the posteriorly directed force. This component, which twists implants about the femoral shaft, increased with femoral flexion angle but changed little with hip flexion moment.


Assuntos
Articulação do Quadril/fisiologia , Modelos Biológicos , Movimento/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Humanos , Músculo Esquelético/fisiologia , Valores de Referência , Suporte de Carga/fisiologia
14.
J Orthop Res ; 12(3): 357-64, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8207589

RESUMO

The effects of healing time and anterior cruciate ligament reconstruction on healing of the medial collateral ligament and stability of the knee joint were evaluated in a rabbit model of an O'Donoghue triad injury (rupture of the medial collateral ligament with removal of the anterior cruciate ligament and part of the medial meniscus). At time 0 and at 6 and 12 weeks postoperatively, the anterior-posterior translation and varus-valgus rotation of the knee, the structural properties of the femur-medial collateral ligament-tibia complex, and the mechanical properties of the substance of the medial collateral ligament were evaluated. Although anterior-posterior translation increased significantly with time, we could not demonstrate a significant temporal effect on varus-valgus rotation. The ultimate load, elongation at failure, and energy absorbed to failure improved with time. In addition, with time, failure of the complex occurred more often in the ligament substance than at the osseous insertion. Because healing time did not affect the cross-sectional area or modulus of the medial collateral ligament, the improved structural properties of the complex resulted not from improvements in the mechanical properties of the tissue but rather from healing of the tibial insertion site. By 12 weeks, the reconstructed knees had only minor signs of osteoarthrosis on the tibiofemoral surfaces; this is in contrast to the findings in anterior cruciate ligament-deficient knees in our earlier study. Additionally, at 12 weeks, the stiffness of the complexes from the reconstructed group was 1.3 times that of the anterior cruciate ligament-deficient group (p < 0.05), and te ultimate load had increased by a factor of 1.6 (p < 0.05). Our findings demonstrate that reconstruction of the anterior cruciate ligament in the rabbit helps to stabilize the joint, improves healing of the medial collateral ligament, and may decrease the incidence of early-onset osteoarthrosis after an O'Donoghue triad injury.


Assuntos
Ligamento Cruzado Anterior/cirurgia , Ligamento Colateral Médio do Joelho/lesões , Ligamento Colateral Médio do Joelho/fisiopatologia , Cicatrização , Animais , Instabilidade Articular/fisiopatologia , Articulação do Joelho/fisiopatologia , Masculino , Equipamentos Ortopédicos , Coelhos , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...