Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 834378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498720

RESUMO

Lateral roots (LRs) occupy a large part of the root system and play a central role in plant water and nutrient uptake. Monocot plants, such as rice, produce two types of LRs: the S-type (short and thin) and the L-type (long, thick, and capable of further branching). Because of the ability to produce higher-order branches, the L-type LR formation contributes to efficient root system expansion. Auxin plays a major role in regulating the root system development, but its involvement in developing different types of LRs is largely unknown. Here, we show that auxin distribution is involved in regulating LR diameter. Dynamin-related protein (DRP) genes were isolated as causative genes of the mutants with increased L-type LR number and diameter than wild-type (WT). In the drp mutants, reduced endocytic activity was detected in rice protoplast and LRs with a decreased OsPIN1b-GFP endocytosis in the protoplast. Analysis of auxin distribution using auxin-responsive promoter DR5 revealed the upregulated auxin signaling in L-type LR primordia (LRP) of the WT and the mutants. The application of polar auxin transport inhibitors enhanced the effect of exogenous auxin to increase LR diameter with upregulated auxin signaling in the basal part of LRP. Inducible repression of auxin signaling in the mOsIAA3-GR system suppressed the increase in LR diameter after root tip excision, suggesting a positive role of auxin signaling in LR diameter increase. A positive regulator of LR diameter, OsWOX10, was auxin-inducible and upregulated in the drp mutants more than the WT, and revealed as a potential target of ARF transcriptional activator. Therefore, auxin signaling upregulation in LRP, especially at the basal part, induces OsWOX10 expression, increasing LR diameter.

2.
Physiol Plant ; 164(2): 216-225, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29446441

RESUMO

Auxin flow is important for different root developmental processes such as root formation, emergence, elongation and gravitropism. However, the detailed information about the mechanisms regulating the auxin flow is less well understood in rice. We characterized the auxin transport-related mutants, Ospin-formed2-1 (Ospin2-1) and Ospin2-2, which exhibited curly root phenotypes and altered lateral root formation patterns in rice. The OsPIN2 gene encodes a member of the auxin efflux carrier proteins that possibly regulates the basipetal auxin flow from the root tip toward the root elongation zone. According to DR5-driven GUS expression, there is an asymmetric auxin distribution in the mutants that corresponded with the asymmetric cell elongation pattern in the mutant root tip. Auxin transport inhibitor, N-1-naphthylphthalamic acid and Ospin2-1 Osiaa13 double mutant rescued the curly root phenotype indicating that this phenotype results from a defect in proper auxin distribution. The typical curly root phenotype was not observed when Ospin2-1 was grown in distilled water as an alternative to tap water, although higher auxin levels were found at the root tip region of the mutant than that of the wild-type. Therefore, the lateral root formation zone in the mutant was shifted basipetally compared with the wild-type. These results reflect that an altered auxin flow in the root tip region is responsible for root elongation growth and lateral root formation patterns in rice.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Gravitropismo/genética , Gravitropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Mutação , Organogênese Vegetal/genética , Organogênese Vegetal/fisiologia , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA