Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794616

RESUMO

Efforts to tap into the broad antimicrobial, insecticidal, and antioxidant activities of essential oils (EOs) are limited due to their strong odor and susceptibility to light and oxidation. Encapsulation of EOs and subsequent drying overcome these limitations and extend their applications. This study characterized freeze-dried (lyophilized) emulsions of eugenol (EU) and thymol (TY) EOs, encapsulated by chemically unmodified cellulose, a sustainable and low-cost resource. High-resolution scanning electron microscopy showed successful lyophilization. While the observed "flake-like" structure of the powders differed significantly from that of the emulsified microcapsules, useful properties were retained. Fourier transform infrared spectroscopy confirmed the presence of EOs in their corresponding powders and thermo-gravimetric analysis demonstrated high encapsulation efficiency (87-88%), improved thermal stability and resistance to evaporation, and slow EO release rates in comparison to their free forms. The lightweight and low-cost cellulose encapsulation, together with the results showing retained properties of the dried powder, enable the use of EOs in applications requiring high temperatures, such as EO incorporation into polymer films, that can be used to protect agricultural crops from microbial infections.

2.
Chem Commun (Camb) ; 58(67): 9357-9360, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35916233

RESUMO

This paper presents compression molding of peptide assemblies with low-density polyethylene (LDPE) for the robust production of antimicrobial polymeric films. These films show a significant reduction of colony-forming units and plaque-forming units. Moreover, they significantly inhibited the growth of three different fungi. These innovative active polymeric films can potentially be applied for medical device wrapping, food packaging, and agriculture applications.


Assuntos
Anti-Infecciosos , Polietileno , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Embalagem de Alimentos , Peptídeos/farmacologia , Polietileno/farmacologia , Polímeros
3.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616445

RESUMO

Essential oils (EOs) are volatile natural organic compounds, which possess pesticidal properties. However, they are vulnerable to heat and light, limiting their range of applications. Encapsulation of EOs is a useful approach to overcome some of these limitations. In this study, a novel emulsification technique is utilized for encapsulation of thymol (TY) and eugenol (EU) (EOs) within microcapsules with an unmodified cellulose shell. Use of low cost materials and processes can be beneficial in agricultural applications. In the encapsulation process, unmodified cellulose was dissolved in 7% aqueous NaOH at low temperature, regenerated to form a dispersion of cellulose hydrogels, which was rigorously mixed with the EOs by mechanical mixing followed by high-pressure homogenization (HPH). Cellulose:EO ratios of 1:1 and 1:8 utilizing homogenization pressures of 5000, 10,000 and 20,000 psi applied in a microfluidizer were studied. Light microscopy, high-resolution cryogenic scanning electron microscopy (cryo-SEM) and Fourier transform infrared spectroscopy (FTIR) revealed successful fabrication of EO-loaded capsules in size range of 1 to ~8 µm. Stability analyses showed highly stabilized oil in water (O/W) emulsions with instability index close to 0. The emulsions exhibited anti-mold activity in post-harvest alfalfa plants, with potency affected by the cellulose:EO ratio as well as the EO type; TY showed the highest anti-mold activity. Taken together, this study showed potential for anti-fungal activity of cellulose-encapsulated EOs in post-harvest hay.

4.
Polymers (Basel) ; 10(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30966112

RESUMO

Significant research has been directed toward the incorporation of bioactive plant extracts or essential oils (EOs) into polymers to endow the latter with antimicrobial functionality. EOs offer a unique combination of having broad antimicrobial activity from a natural source, generally recognized as safe (GRAS) recognition in the US, and a volatile nature. However, their volatility also presents a major challenge in their incorporation into polymers by conventional high-temperature-processing techniques. Herein, antimicrobial polypropylene (PP) cast films were produced by incorporating carvacrol (a model EO) or carvacrol, loaded into halloysite nanotubes (HNTs), via melt compounding. We studied the composition-structure-property relationships in these systems, focusing on the effect of carvacrol on the composition of the films, the PP crystalline phase and its morphology and the films' mechanical and antimicrobial properties. For the first time, molecular dynamics simulations were applied to reveal the complex interactions between the components of these carvacrol-containing systems. We show that strong molecular interactions between PP and carvacrol minimize the loss of this highly-volatile EO during high-temperature polymer processing, enabling semi-industrial scale production. The resulting films exhibit outstanding antimicrobial properties against model microorganisms (Escherichia coli and Alternaria alternata). The PP/(HNTs-carvacrol) nanocomposite films, containing the carvacrol-loaded HNTs, display a higher level of crystalline order, superior mechanical properties and prolonged release of carvacrol, in comparison to PP/carvacrol blends. These properties are ascribed to the role of HNTs in these nanocomposites and their effect on the PP matrix and retained carvacrol content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...