Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(4): e14455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635138

RESUMO

Toxoplasma gondii is a zoonotic parasite infecting humans and nearly all warm-blooded animals. Successful parasitism in diverse hosts at various developmental stages requires the parasites to fine tune their metabolism according to environmental cues and the parasite's needs. By manipulating the ß and γ subunits, we have previously shown that AMP-activated protein kinase (AMPK) has critical roles in regulating the metabolic and developmental programmes. However, the biological functions of the α catalytic subunit have not been established. T. gondii encodes a canonical AMPKα, as well as a KIN kinase whose kinase domain has high sequence similarities to those of classic AMPKα proteins. Here, we found that TgKIN is dispensable for tachyzoite growth, whereas TgAMPKα is essential. Depletion of TgAMPKα expression resulted in decreased ATP levels and reduced metabolic flux in glycolysis and the tricarboxylic acid cycle, confirming that TgAMPK is involved in metabolic regulation and energy homeostasis in the parasite. Sequential truncations at the C-terminus found an α-helix that is key for the function of TgAMPKα. The amino acid sequences of this α-helix are not conserved among various AMPKα proteins, likely because it is involved in interactions with TgAMPKß, which only have limited sequence similarities to AMPKß in other eukaryotes. The essential role of the less conserved C-terminus of TgAMPKα provides opportunities for parasite specific drug designs targeting TgAMPKα.


Assuntos
Parasitos , Toxoplasma , Animais , Humanos , Proteínas Quinases Ativadas por AMP , Sequência de Aminoácidos , Proliferação de Células
2.
mBio ; 14(5): e0178523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37750704

RESUMO

IMPORTANCE: Sexual development is vital for the transmission, genetic hybridization, and population evolution of apicomplexan pathogens, which include several clinically relevant parasites, such as Plasmodium, Eimeria, and Toxoplasma gondii. Previous studies have demonstrated different morphological characteristics and division patterns between asexual and sexual stages of the parasites. However, the primary regulation is poorly understood. A transition from the asexual to the sexual stage is supposedly triggered/accompanied by rewiring of gene expression and controlled by transcription factors and chromatin modulators. Herein, we discovered a tachyzoite-specific transcriptional factor AP2XII-1, which represses the presexual development in the asexual tachyzoite stage of T. gondii. Conditional knockdown of AP2XII-1 perturbs tachyzoite proliferation by endodyogeny and drives a transition to a morphologically and transcriptionally distinct merozoite stage. The results also suggest a hierarchical transcriptional regulation of sexual development by AP2 factors and provide a path to culturing merozoites and controlling inter-host transmission of T. gondii.


Assuntos
Toxoplasma , Animais , Toxoplasma/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Merozoítos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
Microb Biotechnol ; 16(10): 1957-1970, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37556171

RESUMO

Toxoplasma gondii is a ubiquitous pathogen that infects all warm-blooded animals, including humans, causing substantial socioeconomic and healthcare burdens. However, there is no ideal vaccine for toxoplasmosis. As metabolism is important in the growth and virulence of Toxoplasma, some key pathways are promising antiparasitic targets. Here, we identified 6-phosphogluconate dehydrogenase 1 (Tg6PGDH1) in the oxidative pentose phosphate pathway as a cytoplasmic protein that is dispensable for tachyzoite growth of T. gondii in vitro but critical for virulence and cyst formation in vivo. The depletion of Tg6PGDH1 causes decreased gene transcription involved in signal transduction, transcriptional regulation and virulence. Furthermore, we analysed the protective effect of the ME49Δ6pgdh1 mutant as an attenuated vaccine and found that ME49Δ6pgdh1 immunization stimulated strong protective immunity against lethal challenges and blocked cyst formation caused by reinfection. Furthermore, we showed that ME49Δ6pgdh1 immunization stimulated increased levels of interferon-gamma, tumour necrosis factor-alpha and Toxoplasma-specific IgG antibodies. These data highlight the role of Tg6PGDH1 in the growth and virulence of T. gondii and its potential as a target for the development of a live-attenuated vaccine.

4.
Microbiol Spectr ; 11(3): e0004023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154708

RESUMO

Metabolism associated with energy production is highly compartmentalized in eukaryotic cells. During this process, transporters that move metabolites across organelle membranes play pivotal roles. The highly conserved ADP/ATP carrier (AAC) involved in ATP and ADP exchange between the mitochondria and cytoplasm is key to linking the metabolic activities in these 2 compartments. The ATP produced in mitochondria can be exchanged with cytoplasmic ADP by AAC, thus satisfying the energy needs in the cytoplasm. Toxoplasma gondii is an obligate intracellular parasite with a wide range of hosts. Previous studies have shown that mitochondrial metabolism helps Toxoplasma to parasitize diverse host cells. Here, we identified 2 putative mitochondria ADP/ATP carriers in Toxoplasma with significant sequence similarity to known AACs from other eukaryotes. We examined the ATP transport function of TgAACs by expressing them in Escherichia coli cells and found that only TgAAC1 had ATP transport activity. Moreover, knockdown of TgAAC1 caused severe growth defects of parasites and heterologous expression of mouse ANT2 in the TgAAC1 depletion mutant restored its growth, revealing its importance for parasite growth. These results verified that TgAAC1 functions as the mitochondrial ADP/ATP carrier in T. gondii and the functional studies demonstrated the importance of TgAAC1 for tachyzoites growth. IMPORTANCE T. gondii has an efficient and flexible energy metabolism system to meet different growth needs. ATP is an energy-carrying molecule and needs to be exchanged between organelles with the assistance of transporters. However, the function of TgAACs has yet to be characterized. Here, we identified 2 putative AACs of T. gondii and verified that only TgAAC1 had ATP transport activity with expression in the intact E. coli cells. Detailed analyses found that TgAAC1 is critical for the growth of tachyzoites and TgAAC2 is dispensable. Moreover, complementation with mouse ANT2 restored the growth speed of iTgAAC1, further suggesting TgAAC1 functions as a mitochondrial ADP/ATP carrier. Our research demonstrated the importance of TgAAC1 for tachyzoites growth.


Assuntos
Parasitos , Toxoplasma , Animais , Camundongos , Parasitos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Microbiol Spectr ; : e0504322, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920199

RESUMO

Toxoplasma gondii is an obligate intracellular parasite capable of infecting humans and animals. The organism has extraordinary metabolic resilience that allows it to establish parasitism in varied nutritional milieus of diverse host cells. Our earlier work has shown that, despite flexibility in the usage of glucose and glutamine as the major carbon precursors, the production of pyruvate by glycolytic enzymes is central to the parasite's growth. Pyruvate is metabolized in a number of subcellular compartments, including the mitochondrion, apicoplast, and cytosol. With the objective of examining the mechanism and importance of the mitochondrial pool of pyruvate imported from the cytosol, we identified the conserved mitochondrial pyruvate carrier (MPC) complex, consisting of two subunits, MPC1 and MPC2, in T. gondii. The two parasite proteins could complement a yeast mutant deficient in growth on leucine and valine. Genetic ablation of either one or both subunits reduced the parasite's growth, mimicking the deletion of branched-chain ketoacid dehydrogenase (BCKDH), which has been reported to convert pyruvate into acetyl-coenzyme A (CoA) in the mitochondrion. Metabolic labeling of the MPC mutants by isotopic glucose revealed impaired synthesis of acetyl-CoA, correlating with a global decrease in carbon flux through glycolysis and the tricarboxylic acid (TCA) cycle. Disruption of MPC proteins exerted only a modest effect on the parasite's virulence in mice, further highlighting its metabolic flexibility. In brief, our work reveals the modus operandi of pyruvate transport from the cytosol to the mitochondrion in the parasite, providing the missing link between glycolysis and the TCA cycle in T. gondii. IMPORTANCE T. gondii is a zoonotic parasite capable of infecting many warm-blooded organisms, including humans. Among others, a feature that allows it to parasitize multiple hosts is its exceptional metabolic plasticity. Although T. gondii can utilize different carbon sources, pyruvate homeostasis is critical for parasite growth. Pyruvate is produced primarily in the cytosol but metabolized in other organelles, such as the mitochondrion and apicoplast. The mechanism of import and physiological significance of pyruvate in these organelles remains unclear. Here, we identified the transporter of cytosol-derived pyruvate into the mitochondrion and studied its constituent subunits and their relevance. Our results show that cytosolic pyruvate is a major source of acetyl-CoA in the mitochondrion and that the mitochondrial pyruvate transporter is needed for optimal parasite growth. The mutants lacking the transporter are viable and virulent in a mouse model, underscoring the metabolic plasticity in the parasite's mitochondrion.

6.
Commun Biol ; 6(1): 306, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949328

RESUMO

Toxoplasma gondii is a prevalent zoonotic pathogen infecting livestock as well as humans. The exceptional ability of this parasite to reproduce in several types of nucleated host cells necessitates a coordinated usage of endogenous and host-derived nutritional resources for membrane biogenesis. Phosphatidylethanolamine is the second most common glycerophospholipid in T. gondii, but how its requirement in the acutely-infectious fast-dividing tachyzoite stage is satisfied remains enigmatic. This work reveals that the parasite deploys de novo synthesis and salvage pathways to meet its demand for ester- and ether-linked PtdEtn. Auxin-mediated depletion of the phosphoethanolamine cytidylyltransferase (ECT) caused a lethal phenotype in tachyzoites due to impaired invasion and cell division, disclosing a vital role of the CDP-ethanolamine pathway during the lytic cycle. In accord, the inner membrane complex appeared disrupted concurrent with a decline in its length, parasite width and major phospholipids. Integrated lipidomics and isotope analyses of the TgECT mutant unveiled the endogenous synthesis of ester-PtdEtn, and salvage of ether-linked lipids from host cells. In brief, this study demonstrates how T. gondii operates various means to produce distinct forms of PtdEtn while featuring the therapeutic relevance of its de novo synthesis.


Assuntos
Toxoplasma , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Fosfatidiletanolaminas/metabolismo , Éter/metabolismo , Glicerofosfolipídeos/metabolismo , Etil-Éteres/metabolismo , Éteres/metabolismo
7.
Nat Commun ; 14(1): 443, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707540

RESUMO

In the unprecedented single-cell sequencing and spatial multiomics era of biology, fluorescence in situ hybridization (FISH) technologies with higher sensitivity and robustness, especially for detecting short RNAs and other biomolecules, are greatly desired. Here, we develop the robust multiplex π-FISH rainbow method to detect diverse biomolecules (DNA, RNA, proteins, and neurotransmitters) individually or simultaneously with high efficiency. This versatile method is successfully applied to detect gene expression in different species, from microorganisms to plants and animals. Furthermore, we delineate the landscape of diverse neuron subclusters by decoding the spatial distribution of 21 marker genes via only two rounds of hybridization. Significantly, we combine π-FISH rainbow with hybridization chain reaction to develop π-FISH+ technology for short nucleic acid fragments, such as microRNA and prostate cancer anti-androgen therapy-resistant marker ARV7 splicing variant in circulating tumour cells from patients. Our study provides a robust biomolecule in situ detection technology for spatial multiomics investigation and clinical diagnosis.


Assuntos
MicroRNAs , Ácidos Nucleicos , Neoplasias da Próstata , Humanos , Masculino , Animais , Hibridização in Situ Fluorescente/métodos , MicroRNAs/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética
8.
Nat Commun ; 14(1): 422, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702847

RESUMO

The ubiquitous pathogen Toxoplasma gondii has a complex lifestyle with different metabolic activities at different stages that are intimately linked to the parasitic environments. Here we identified the eukaryotic regulator of cellular homeostasis AMP-activated protein kinase (AMPK) in Toxoplasma and discovered its role in metabolic programming during parasite's lytic cycle. The catalytic subunit AMPKα is quickly phosphorylated after the release of intracellular parasites to extracellular environments, driving energy-producing catabolism to power parasite motility and invasion into host cells. Once inside host cells, AMPKα phosphorylation is reduced to basal level to promote a balance between energy production and biomass synthesis, allowing robust parasite replication. AMPKγ depletion abolishes AMPKα phosphorylation and suppresses parasite growth, which can be partially rescued by overexpressing wildtype AMPKα but not the phosphorylation mutants. Thus, through the cyclic reprogramming by AMPK, the parasites' metabolic needs at each stage are satisfied and the lytic cycle progresses robustly.


Assuntos
Parasitos , Toxoplasma , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Parasitos/metabolismo , Fosforilação , Homeostase
9.
Front Microbiol ; 13: 1027073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439853

RESUMO

Toxoplasma gondii is an obligate intracellular zoonotic pathogen capable of infecting almost all cells of warm-blooded vertebrates. In intermediate hosts, this parasite reproduces asexually in two forms, the tachyzoite form during acute infection that proliferates rapidly and the bradyzoite form during chronic infection that grows slowly. Depending on the growth condition, the two forms can interconvert. The conversion of tachyzoites to bradyzoites is critical for T. gondii transmission, and the reactivation of persistent bradyzoites in intermediate hosts may lead to symptomatic toxoplasmosis. However, the mechanisms that control bradyzoite differentiation have not been well studied. Here, we review recent advances in the study of bradyzoite biology and stage conversion, aiming to highlight the determinants associated with bradyzoite development and provide insights to design better strategies for controlling toxoplasmosis.

10.
PLoS Pathog ; 18(11): e1011009, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36449552

RESUMO

Many apicomplexan parasites harbor a non-photosynthetic plastid called the apicoplast, which hosts important metabolic pathways like the methylerythritol 4-phosphate (MEP) pathway that synthesizes isoprenoid precursors. Yet many details in apicoplast metabolism are not well understood. In this study, we examined the physiological roles of four glycolytic enzymes in the apicoplast of Toxoplasma gondii. Many glycolytic enzymes in T. gondii have two or more isoforms. Endogenous tagging each of these enzymes found that four of them were localized to the apicoplast, including pyruvate kinase2 (PYK2), phosphoglycerate kinase 2 (PGK2), triosephosphate isomerase 2 (TPI2) and phosphoglyceraldehyde dehydrogenase 2 (GAPDH2). The ATP generating enzymes PYK2 and PGK2 were thought to be the main energy source of the apicoplast. Surprisingly, deleting PYK2 and PGK2 individually or simultaneously did not cause major defects on parasite growth or virulence. In contrast, TPI2 and GAPDH2 are critical for tachyzoite proliferation. Conditional depletion of TPI2 caused significant reduction in the levels of MEP pathway intermediates and led to parasite growth arrest. Reconstitution of another isoprenoid precursor synthesis pathway called the mevalonate pathway in the TPI2 depletion mutant partially rescued its growth defects. Similarly, knocking down the GAPDH2 enzyme that produces NADPH also reduced isoprenoid precursor synthesis through the MEP pathway and inhibited parasite proliferation. In addition, it reduced de novo fatty acid synthesis in the apicoplast. Together, these data suggest a model that the apicoplast dwelling TPI2 provides carbon source for the synthesis of isoprenoid precursor, whereas GAPDH2 supplies reducing power for pathways like MEP, fatty acid synthesis and ferredoxin redox system in T. gondii. As such, both enzymes are critical for parasite growth and serve as potential targets for anti-toxoplasmic intervention designs. On the other hand, the dispensability of PYK2 and PGK2 suggest additional sources for energy in the apicoplast, which deserves further investigation.


Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Redes e Vias Metabólicas , Parasitos/metabolismo , Ácido Pirúvico/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
11.
Cell Mol Life Sci ; 79(10): 532, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36205781

RESUMO

Toxoplasma gondii is a widespread eukaryotic pathogen that causes life-threatening diseases in humans and diverse animals. It has a complex life cycle with multiple developmental stages, which are timely adjusted according to growth conditions. But the regulatory mechanisms are largely unknown. Here we show that the AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in eukaryotes, plays crucial roles in controlling the cell cycle progression and bradyzoite development in Toxoplasma. Deleting the ß regulatory subunit of AMPK in the type II strain ME49 caused massive DNA damage and increased spontaneous conversion to bradyzoites (parasites at chronic infection stage), leading to severe growth arrest and reduced virulence of the parasites. Under alkaline stress, all Δampkß mutants converted to a bradyzoite-like state but the cell division pattern was significantly impaired, resulting in compromised parasite viability. Moreover, we found that phosphorylation of the catalytic subunit AMPKα was greatly increased in alkaline stressed parasites, whereas AMPKß deletion mutants failed to do so. Phosphoproteomics found that many proteins with predicted roles in cell cycle and cell division regulation were differentially phosphorylated after AMPKß deletion, under both normal and alkaline stress conditions. Together, these results suggest that the parasite AMPK has critical roles in safeguarding cell cycle progression, and guiding the proper exist of the cell cycle to form mature bradyzoites when the parasites are stressed. Consistent with this model, growth of parasites was not significantly altered when AMPKß was deleted in a strain that was naturally reluctant to bradyzoite development.


Assuntos
Parasitos , Toxoplasma , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ciclo Celular , Divisão Celular , Humanos , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
12.
Microbiol Spectr ; 10(5): e0136322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214684

RESUMO

Toxoplasma gondii (T. gondii) is a pathogen belonging to the apicomplexan phylum, and it threatens human and animal health. Calcium ions, a critical second messenger in cells, can regulate important biological processes, including parasite invasion and egress. Calmodulin (CaM) is a small, highly conserved, Ca2+-binding protein found in all eukaryotic cells. After binding to Ca2+, CaM can be activated to interact with various proteins. However, little is known about CaM's function and its interacting proteins in T. gondii. In this study, we successfully knocked down CaM in the T. gondii parent strain TATI using a tetracycline-off system with the Toxoplasma CaM promoter. The results indicated that CaM was required for tachyzoite proliferation, invasion, and egress and that CaM depletion resulted in apicoplast loss, thus threatening parasite survival in the next lytic cycle. In the tachyzoite stage, CaM loss caused significant anomalies in the parasite's basal constriction, motility, and parasite rosette-like arrangement in the parasitophorous vacuole (PV). These phenotypic defects caused by CaM depletion indicate the importance of CaM in T. gondii. Therefore, it is important to identify the CaM-interacting proteins in T. gondii. Applying BioID technology, more than 300 CaM's proximal interacting proteins were identified from T. gondii. These CaM partners were broadly distributed throughout the parasite. Furthermore, the protein interactome and transcriptome analyses indicated the potential role of CaM in ion binding, cation binding, metal ion binding, calcium ion binding, and oxidation-reduction. Our findings shed light on the CaM function and CaM-interactome in T. gondii and other eukaryotes. IMPORTANCE Toxoplasma gondii is an intracellular pathogen that threatens human and animal health. This unicellular parasite is active in many biological processes, such as egress and invasion. The implementation efficiency of T. gondii biological processes is dependent on signal transmission. Ca2+, as a second messenger, is essential for the parasite's life cycle. Calmodulin, a ubiquitous Ca2+ receptor protein, is highly conserved and mediates numerous Ca2+-dependent events in eukaryotes. Few CaM functions or regulated partners have been characterized in T. gondii tachyzoites. Here, we reported the essential functions of calmodulin in T. gondii tachyzoite and the identification of its interacting partners using BioID technology, shedding light on the CaM function and CaM-interactome in Toxoplasma gondii and other eukaryotes.


Assuntos
Parasitos , Toxoplasma , Animais , Humanos , Toxoplasma/genética , Calmodulina/genética , Calmodulina/metabolismo , Cálcio/metabolismo , Tecnologia , Tetraciclinas/metabolismo , Cátions/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
13.
BMC Vet Res ; 18(1): 331, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050691

RESUMO

BACKGROUND: Toxoplasma gondii infects almost all warm-blooded animals, and cats play a crucial role in the epidemiology of T. gondii as the definitive host. Despite sporadic reports on the seroprevalence of T. gondii in domestic cats, systematic surveys are lacking and some regions remain in China uninvestigated. METHODS: A total of 1,521 serum samples were collected from 10 regions of China and analyzed by antibodies against T. gondii by ELISA with the purpose of identifying risk factors of T. gondii infection in cats across China and obtaining seroprevalence data from some previously uninvestigated areas. RESULTS: Antibodies to T. gondii were detected in 62 of 1,478 (4.2%) urban pet cats and in 9 of 43 (20.9%) stray cats. Among the regions examined, the prevalence was 13% in Sichuan, 12.8% in Chongqing, 6.4% in Hunan, 2.5% in Hubei and 0.9% in Guangdong. Additionally, this is the first report on the seroprevalence of T. gondii in urban pet cats from Qinghai (6.2%), Anhui (3.1%), Jiangxi (2.5%), Shaanxi (2.4%) and Ningxia (1.6%). The age and lifestyle (stray or pet) of cats were identified as the risk factors for seropositivity by multivariate analysis of the data. CONCLUSIONS: Our findings improve our understanding of seroprevalence and risk factors of T. gondii infection in cats across China, and provide useful information for the formulating of preventive and control measures against this widespread zoonotic parasite.


Assuntos
Doenças do Gato , Toxoplasma , Toxoplasmose Animal , Animais , Animais Domésticos , Anticorpos Antiprotozoários , Doenças do Gato/epidemiologia , Gatos , China/epidemiologia , Fatores de Risco , Estudos Soroepidemiológicos , Toxoplasmose Animal/parasitologia
14.
Microbiol Spectr ; 10(5): e0218622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094254

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that acquires all necessary nutrients from the hosts, but the exact nutrient acquisition mechanisms are poorly understood. Here, we identified three putative phosphate transporters in T. gondii. TgPiT and TgPT2 are mainly on the plasma membrane, whereas TgmPT is localized to the mitochondrion. TgPiT and TgmPT are widely present and conserved in apicomplexan parasites that include Plasmodium and Eimeria species. Nonetheless, they are dispensable for the growth and virulence of Toxoplasma. TgPT2, on the other hand, is restricted to coccidia parasites and is essential for Toxoplasma survival. TgPT2 depletion led to reduced motility and invasion, as well as growth arrest of the parasites both in vitro and in vivo. Both TgPiT and TgPT2 have phosphate transport activities and contribute to parasites' inorganic phosphate (Pi) absorption. Interestingly, the Pi importing activity of Toxoplasma parasites could be competitively inhibited by ATP and AMP. Furthermore, direct uptake of 32P-ATP was also observed, indicating the parasites' ability to scavenge host ATP. Nonetheless, ATP/AMP import is not mediated by TgPiT or TgPT2, suggesting additional mechanisms. Together, these results show the complex pathways of phosphate transport in Toxoplasma, and TgPT2 is a potential target for antitoxoplasmic intervention design due to its essential role in parasite growth. IMPORTANCE To grow and survive within host cells, Toxoplasma must scavenge necessary nutrients from hosts to support its parasitism. Transporters located in the plasma membrane of the parasites play critical roles in nutrient acquisition. Toxoplasma encodes a large number of transporters, but so far, only a few have been characterized. In this study, we identified two phosphate transporters, TgPiT and TgPT2, to localize to the plasma membrane of Toxoplasma. Although both TgPiT and TgPT2 possess phosphate transport activities, only the novel transporter TgPT2 was essential for parasite growth, both in vitro and in vivo. In addition, TgPT2 and its orthologs are only present in coccidia parasites. As such, TgPT2 represents a potential target for drug design against toxoplasmosis. In addition, our data indicated that Toxoplasma can take up ATP and AMP from the environment, providing new insights into the energy metabolism of Toxoplasma.


Assuntos
Coccídios , Parasitos , Toxoplasma , Animais , Toxoplasma/genética , Coccídios/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatos/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo
15.
PLoS Pathog ; 18(9): e1010864, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121870

RESUMO

Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.


Assuntos
Via de Pentose Fosfato , Toxoplasma , Antiparasitários , Carbono/metabolismo , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Isomerases/metabolismo , NADP/metabolismo , Via de Pentose Fosfato/fisiologia , Fosfatos/metabolismo , Racemases e Epimerases/metabolismo , Ribose , Toxoplasma/metabolismo , Transaldolase/metabolismo
16.
Parasit Vectors ; 15(1): 347, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175964

RESUMO

BACKGROUND: It has been reported that the NF-κB pathway, an important component of host defense system against pathogens infections, can be differentially modulated by different Toxoplasma gondii strains, depending on the polymorphism of the GRA15 protein. The recently isolated Toxoplasma strain T.gHB1 is a type 1 (ToxoDB#10) strain but shows different virulence determination mechanisms compared to the classic type 1 strains like RH (ToxoDB#10). Therefore, it is worth investigating whether the T.gHB1 strain (ToxoDB#10) affects the host NF-κB signaling pathway. METHODS: The effects of T.gHB1 (ToxoDB#10) on host NF-κB pathway were investigated in HEK293T cells. The GRA15 gene product was analyzed by bioinformatics, and its effect on NF-κB activation was examined by Western blotting and nuclear translocation of p65. Different truncations of T.gHB1 GRA15 were constructed to map the critical domains for NF-κB activation. RESULTS: We demonstrated that the NF-κB pathway signaling pathway could be activated by the newly identified type 1 T.gHB1 strain (ToxoDB#10) of Toxoplasma, while the classic type 1 strain RH (ToxoDB#10) did not. T.gHB1 GRA15 possesses only one transmembrane region with an extended C terminal region, which is distinct from that of classic type 1 (ToxoDB#10) and type 2 (ToxoDB#1) strains. T.gHB1 GRA15 could clearly induce IκBα phosphorylation and p65 nuclear translocation. Dual luciferase assays in HEK293T cells revealed a requirement for 194-518 aa of T.gHB1 GRA15 to effectively activate NF-κB. CONCLUSIONS: The overall results indicated that the newly isolated type 1 isolate T.gHB1 (ToxoDB#10) had a unique GRA15, which could activate the host NF-κB signaling through inducing IκBα phosphorylation and p65 nuclear translocation. These results provide new insights for our understanding of the interaction between Toxoplasma parasites and its hosts.


Assuntos
NF-kappa B , Proteínas de Protozoários , Toxoplasma , Células HEK293 , Humanos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais
17.
Microbiol Spectr ; 10(4): e0012022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35735977

RESUMO

Toxoplasma gondii is a ubiquitous pathogen infecting one third of the world's population and diverse animals. It has a complex life cycle alternating among different developmental stages, which contributes to its transmission and pathogenesis. The parasite has a sophisticated gene regulation network that enables timely expression of genes at designated stages. However, little is known about the underlying regulatory mechanisms. Here, we identified an AP2 family transcription factor named TgAP2X-4, which was crucial for parasite growth during the acute infection stage. TgAP2X-4 deletion leads to reduced expression of many genes that are normally upregulated during the M phase of the cell cycle. These include genes that encode rhoptry neck proteins that are key for parasite invasion. As a result, the Δap2X-4 mutant displayed significantly decreased efficiency of host cell invasion. Transcriptomic analyses suggested that TgAP2X-4 also regulates a large group of genes that are typically induced during chronic infection, such as BAG1 and LDH2. Given the diverse impacts on gene expression, TgAP2X-4 inactivation results in severely impaired parasite growth, as well as drastic attenuation of parasite virulence and complete inability to form chronic infection. Therefore, TgAP2X-4 represents a candidate for antitoxoplasmic drug and vaccine designs. IMPORTANCE Toxoplasma gondii has a complicated gene regulation network that allows "just in time" expression of genes to cope with the physiological needs at each stage during the complex life cycle. However, how such regulation is achieved is largely unknown. Here, we identified a transcription factor named TgAP2X-4 that is critical for the growth and life cycle progression of the parasite. Detailed analyses found that TgAP2X-4 regulated the expression of many cell cycle-regulated genes, including a subset of rhoptry genes that were essential for the parasites to enter host cells. It also regulated the expression of many genes involved in the development of chronic infection. Because of the diverse impacts on gene expression, TgAP2X-4 inactivation caused reduced parasite growth in vitro and attenuated virulence in vivo. Therefore, it is a potential target for drug or vaccine designs against Toxoplasma infections.


Assuntos
Toxoplasma , Animais , Ciclo Celular , Divisão Celular , Estágios do Ciclo de Vida , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Fatores de Transcrição/metabolismo
18.
Anim Dis ; 2(1): 6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498759
19.
PLoS Pathog ; 18(2): e1010293, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104280

RESUMO

Many biosynthetic pathways produce pyrophosphate (PPi) as a by-product, which is cytotoxic if accumulated at high levels. Pyrophosphatases play pivotal roles in PPi detoxification by converting PPi to inorganic phosphate. A number of apicomplexan parasites, including Toxoplasma gondii and Cryptosporidium parvum, express a PPi-dependent phosphofructokinase (PPi-PFK) that consumes PPi to power the phosphorylation of fructose-6-phosphate. However, the physiological roles of PPi-PFKs in these organisms are not known. Here, we report that Toxoplasma expresses both ATP- and PPi-dependent phosphofructokinases in the cytoplasm. Nonetheless, only PPi-PFK was indispensable for parasite growth, whereas the deletion of ATP-PFK did not affect parasite proliferation or virulence. The conditional depletion of PPi-PFK completely arrested parasite growth, but it did not affect the ATP level and only modestly reduced the flux of central carbon metabolism. However, PPi-PFK depletion caused a significant increase in cellular PPi and decreased the rates of nascent protein synthesis. The expression of a cytosolic pyrophosphatase in the PPi-PFK depletion mutant reduced its PPi level and increased the protein synthesis rate, therefore partially rescuing its growth. These results suggest that PPi-PFK has a major role in maintaining pyrophosphate homeostasis in T. gondii. This role may allow PPi-PFK to fine-tune the balance of catabolism and anabolism and maximize the utilization efficiency for carbon nutrients derived from host cells, increasing the success of parasitism. Moreover, PPi-PFK is essential for parasite propagation and virulence in vivo but it is not present in human hosts, making it a potential drug target to combat toxoplasmosis.


Assuntos
Trifosfato de Adenosina/metabolismo , Difosfatos/metabolismo , Fosfotransferases/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia , Metabolismo dos Carboidratos , Homeostase , Mutação , Fosforilação , Fosfotransferases/genética , Toxoplasma/genética
20.
Parasitol Res ; 121(1): 235-243, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34816300

RESUMO

Coccidiosis is an intestinal parasitic disease that causes huge economic losses to the poultry industry globally. Eimeria tenella belonging to protozoon is the causative agent of cecal coccidiosis in chicken, and it causes enormous damage to poultry industry. The surface antigens (SAGs) of apicomplexan parasites have functions of attachment and invasion in host-parasite interaction. As a result of parasitic invasion, host immune response is triggered. However, the immunogenicity and potency of E. tenella surface antigen 6 and 15 (EtSAG 6 and 15), as vaccinal candidate antigen, remain largely unknown. Therefore, gene fragments of E. tenella EtSAG 6 and 15 were amplified and transformed to pET28a prokaryotic vector for recombinant protein expression. The pEGFP-N1 eukaryotic vectors with EtSAG 6 and 15 amplification fragments (pEGFP-N1-EtSAG 5 and 16) were transformed into 293 T cell line. The results of reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis revealed successful expressions of EtSAG 6 and 15 in Escherichia coli and 293 T cells. Subsequently, animal experiments of 49 cobb broilers were performed to evaluate immunoprotection of recombinant proteins and DNA vaccines derived from E. tenella EtSAG 5 and 16 with an immunizing dose of 100 µg, respectively. Chickens vaccinated with rEtSAG 6 protein, rEtSAG 15 protein, pEGFP-N1-EtSAG 6 plasmid, or pEGFP-N1-EtSAG 15 plasmid showed no significant increase in IFN-γor interleukin-4 (IL-4) level compared with control groups. Chickens vaccinated with protein rEtSAG 6, protein rEtSAG 15, pEGFP-N1-EtSAG 6 plasmid, or pEGFP-N1-EtSAG 15 exhibited higher weight gains, lower oocyst output, and lower mean lesion scores, compared with infection control group. Among the four immunized groups, plasmid EGFP-N1-EtSAG 6 (100 µg) group exhibited the highest anticoccidial index (ACI) value (150.20). Overall, plasmids EGFP-N1-EtSAG 6 and 15, as DNA vaccines, provided a more effective immunoprotection for chickens against E. tenella than protein rEtSAG 6 and protein rEtSAG 15 as subunit vaccines. EtSAG 6 and 15 are promising candidate antigen genes for developing coccidiosis vaccine.


Assuntos
Eimeria tenella , Doenças das Aves Domésticas , Vacinas Protozoárias , Vacinas de DNA , Animais , Antígenos de Superfície , Galinhas , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...