Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(40): e2304490, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562376

RESUMO

The prevalence of wide-bandgap (WBG) semiconductors allows modern electronic devices to operate at much higher frequencies. However, development of soft magnetic materials with high-frequency properties matching the WBG-based devices remains challenging. Here, a promising nanocrystalline-amorphous composite alloy with a normal composition Fe75.5 Co0.5 Mo0.5 Cu1 Nb1.5 Si13 B8 in atomic percent is reported, which is producible under industrial conditions, and which shows an exceptionally high permeability at high frequencies up to 36 000 at 100 kHz, an increase of 44% compared with commercial FeSiBCuNb nanocrystalline alloy (25 000 ± 2000 at 100 kHz), outperforming all existing nanocrystalline alloy systems and commercial soft magnetic materials. The alloy is obtained by a unique magnetic-heterogeneous nanocrystallization mechanism in an iron-based amorphous alloy, which is different from the traditional strategy of nanocrystallization by doping nonmagnetic elements (e.g., Cu and Nb). The induced magnetic inhomogeneity by adding Co atoms locally promotes the formation of highly ordered structures acting as the nuclei of nanocrystals, and Mo atoms agglomerate around the interfaces of the nanocrystals, inhibiting nanocrystal growth, resulting in an ultrafine nanocrystalline-amorphous dual-phase structure in the alloy. The exceptional soft magnetic properties are shown to be closely related to the low magnetic anisotropy and the unique spin rotation mechanism under alternating magnetic fields.

2.
J Hazard Mater ; 458: 132010, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423132

RESUMO

Traditional polymeric fibrous membranes have been extensively used to reduce the health risks caused by airborne particulate matter (PM), leading to the dramatically increasing pollution of plastics and microplastics. Although great efforts have been made to develop poly(lactic acid) (PLA)-based membrane filters, they are frequently dwarfed by their relatively poor electret properties and electrostatic adsorptive mechanisms. To resolve this dilemma, a bioelectret approach was proposed in this work, strategically involving the bioinspired adhesion of dielectric hydroxyapatite nanowhiskers as a biodegradable electret to promote the polarization properties of PLA microfibrous membranes. In addition to significant improvements in tensile properties, the incorporation of hydroxyapatite bioelectret (HABE) enabled remarkable increase in the removal efficiencies of ultrafine PM0.3 in a high-voltage electrostatic field (10 and 25 kV). This was exemplified by the largely increased filtering performance (69.75%, 23.1 Pa) for PLA membranes loaded with 10 wt% HABE at the normal airflow rate (32 L/min) compared to the pristine PLA counterpart (32.89%, 7.2 Pa). Although the filtration efficiency of PM0.3 for the counterpart dramatically decreased to 21.6% at 85 L/min, the increment was maintained at nearly 196% for the bioelectret PLA, while an ultralow pressure drop (74.5 Pa) and high humidity resistance (RH 80%) were achieved. The unusual property combination were ascribed to the HABE-enabled realization of multiple filtration mechanisms, including the simultaneous enhancement of physical interception and electrostatic adsorption. The significant filtration applications, unattainable with conventional electret membranes, demonstrate the bioelectret PLA as a promising biodegradable platform that allows high filtration properties and humidity resistance.

3.
Adv Mater ; 35(38): e2303439, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37279880

RESUMO

Platinum-based electrocatalysts possess high water electrolysis activity and are essential components for hydrogen evolution reaction (HER). A major challenge, however, is how to break the cost-efficiency trade-off. Here, a novel defect engineering strategy is presented to construct a nanoporous (FeCoNiB0.75 )97 Pt3 (atomic %) high-entropy metallic glass (HEMG) with a nanocrystalline surface structure that contains large amounts of lattice distortion and stacking faults to achieve excellent electrocatalytic performance using only 3 at% of Pt. The defect-rich HEMG achieves ultralow overpotentials at ampere-level current density of 1000 mA cm-2 for HER (104 mV) and oxygen evolution reaction (301 mV) under alkaline conditions, while retains a long-term durability exceeding 200 h at 100 mA cm-2 . Moreover, it only requires 81 and 122 mV to drive the current densities of 1000 and 100 mA cm-2 for HER under acidic and neutral conditions, respectively. Modelling results reveal that lattice distortion and stacking fault defects help to optimize atomic configuration and modulate electronic interaction, while the surface nanoporous architecture provides abundant active sites, thus synergistically contributing to the reduced energy barrier for water electrolysis. This defect engineering approach combined with a HEMG design strategy is expected to be widely applicable for development of high-performance alloy catalysts.

4.
Pharmaceutics ; 14(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297582

RESUMO

In this work, a facile direct current atmospheric pressure micro-plasma (APM) technology was deployed for the synthesis of functional gold nanoparticle/chitosan (AuNP/CS) nanocomposites for the first time. Different experimental parameters, such as metal salt precursor concentration and chitosan viscosity, have been investigated to understand their effects on the resulting nanocomposite structures and properties. The nanocomposites were fully characterized using a wide range of material characterization techniques such as UV-vis, transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) analyses. Potential reaction pathways have been proposed for the nanocomposite synthesis process. Finally, potential of the synthesized nanocomposites towards photothermal conversion and bacteria eradiation applications has been demonstrated. The results show that APM is a facile, rapid and versatile technique for the synthesis of AuNP/CS functional nanocomposites. Through this work, a more in-depth understanding of the multi-phase system (consisting of gas, plasma, liquid and solid) has been established and such understanding could shine a light on the future design and fabrication of new functional nanocomposites deploying the APM technique.

5.
Small ; 18(46): e2204135, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36216584

RESUMO

The rational design of high-performance and cost-effective electrocatalysts to overcome the kinetically sluggish water oxidation reaction is a grand challenge in water electrolysis. Transitional metals with incompletely filled d orbitals are expected to have intrinsic electronic interaction to promote the reaction kinetics, however, the construction of multiple active sites is still a bottleneck problem. Here, inspired by an amorphous alloy design strategy with chemical tunability, a noble-metal-free FeCoMoPB amorphous nanoplate for superior alkaline water oxidation is developed. The achieved overpotentials at current densities of 10, 100, and 500 mA cm-2 are 239, 281, and 331 mV, respectively, while retaining a reliable stability of 48 h, outperforming most currently available electrocatalysts. Experimental and theoretical results reveal that the chemical complexity of the amorphous nanoplate leads to the formation of multiple active sites that is able to greatly lower the free energy of the rate-determining step during the water oxidation reaction. Moreover, the Mo element would result in an electron delocalization behavior to promote electron redistribution at its surrounding regions for readily donating and taking electrons. This amorphous alloy design strategy is expected to stimulate the development of more efficient electrocatalysts that is applicable in energy devices, such as metal-air batteries, fuel cells, and water electrolysis.

6.
Int J Biol Macromol ; 222(Pt A): 927-937, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183756

RESUMO

The past decades have witnessed the archetypal shift from petroleum-based to bioplastics including poly(lactic acid) (PLA) for multifunctional packaging. Here we disclose a microwave-assisted functionalization (MAF) approach to functionalize wood fibers (FWFs) at minute level and high yields (approaching 99 %), conferring high affinity to PLA matrix and significant promotion of mechanical properties. By incorporating of 10 wt% FWFs, the tensile strength and toughness of PLA composite films were elevated to 54.5 MPa and 1.6 MJ/m3, increasing nearly 28 % and over 45 % compared to those of the counterpart loaded pristine wood fibers (PWFs), respectively. It is of significance to note the FWF-enabled unique optical properties for PLA, as exemplified by approximately 100 % UV-blocking ratio (UVR) in the whole UV region with the addition of 20 wt% FWFs. By contrast, the UVR values of PWF-filled PLA (5 %-20 %) gradually decreased as the fiber contents increased, mainly ascribed to the UV reflection at the poorly bonded interfaces and relatively inferior functionality of PWFs. This distinction allowed us to fabricate UV-barrier packaging for preservation of fresh fruits, which were perishable under the UV light of sunshine. The impressive mechanical robustness and high UVR, may prompt affordable and ecofriendly PLA/FWF composites appropriate for packaging.


Assuntos
Embalagem de Alimentos , Raios Ultravioleta , Frutas , Poliésteres
7.
Materials (Basel) ; 15(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36143630

RESUMO

Spatial heterogeneity, as a crucial structural feature, has been intensively studied in metallic glasses (MGs) using various techniques, including two-dimensional nanoindentation mapping. However, the limiting spatial resolution of nanoindentation mapping on MGs remains unexplored. In this study, a comprehensive study on four representative MGs using nanoindentation mapping with a Berkovich indenter was carried out by considering the influence of a normalized indentation spacing d/h (indentation spacing/maximum indentation depth). It appeared to have no significant correlation with the measured hardness and elastic modulus when d/h > 10. The hardness and elastic modulus started to increase slightly (up to ~5%) when d/h < 10 and further started to decrease obviously when d/h < 5. The mechanism behind these phenomena was discussed based on a morphology analysis of residual indents using scanning electron microscopy and atomic force microscopy. It was found that the highest spatial resolution of ~200 nm could be achieved with d/h = 10 using a typical Berkovich indenter for nanoindentation mapping on MGs, which was roughly ten times the curvature radius of the Berkovich indenter tip (not an ideal triangular pyramid) used in this study. These results help to promote the heterogeneity studies of MGs using nanoindentation that are capable of covering a wide range of length scales with reliable and consistent results.

8.
Nano Lett ; 22(7): 2867-2873, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35298183

RESUMO

Comprehending and controlling the stability of glasses is one of the most challenging issues in glass science. Here we explore the microscopic origin of the ultrastability of a Cu-Zr-Al metallic glass (MG). It is revealed that the ultrastable window (0.7-0.8 Tg) of MGs correlates with the enhanced degree of nanoscale-to-mesoscale structural/mechanical heterogeneity and the connection of stability-favored clusters. On one side, the increased fraction of stability-favored clusters promotes the formation of a stable percolating network through a critical percolation transition, which is essential to form ultrastable MG. On the other side, the enhanced heterogeneity arising from an increased distribution in local clusters may promote synergistically a more efficient and frustrated packing of amorphous structure, contributing to the ultrastability. The present work sheds new light on the stability of MGs and provides a step toward next-generation MGs with superior stability and performances.

9.
ACS Appl Mater Interfaces ; 14(8): 10288-10297, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175044

RESUMO

Scaling up the production of cost-effective electrocatalysts for efficient water splitting at the industrial level is critically important to achieve carbon neutrality in our society. While noble-metal-based materials represent a high-performance benchmark with superb activities for hydrogen and oxygen evolution reactions, their high cost, poor scalability, and scarcity are major impediments to achieve widespread commercialization. Herein, a flexible freestanding Fe-based metallic glass (MG) with an atomic composition of Fe50Ni30P13C7 was prepared by a large-scale metallurgical technique that can be employed directly as a bifunctional electrode for water splitting. The surface hydroxylation process created unique structural and chemical heterogeneities in the presence of amorphous FeOOH and Ni2P as well as nanocrystalline Ni2P that offered various active sites to optimize each rate-determining step for water oxidation. The achieved overpotentials for the oxygen evolution reaction were 327 and 382 mV at high current densities of 100 and 500 mA cm-2 in alkaline media, respectively, and a cell voltage of 1.59 V was obtained when using the MG as both the anode and the cathode for overall water splitting at a current density of 10 mA cm-2. Theoretical calculations unveiled that amorphous FeOOH makes a significant contribution to water molecule adsorption and oxygen evolution processes, while the amorphous and nanocrystalline Ni2P stabilize the free energy of hydrogen protons (ΔGH*) in the hydrogen evolution process. This MG alloy design concept is expected to stimulate the discovery of many more high-performance catalytic materials that can be produced at an industrial scale with customized properties in the near future.

10.
Acta Biomater ; 64: 269-278, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28782722

RESUMO

The effects of dynamic compressive loading on the in vitro degradation behavior of pure poly-lactic acid (PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA) are investigated. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. As the applied stress is increased from 0.1MPa to 0.9MPa or frequency from 0.5Hz to 2.5Hz, the overall degradation rate goes up. After immersion for 21days at 0.9MPa and 2.5Hz, the bending strength retention of the composite and pure PLA is 60.1% and 50%, respectively. Dynamic loading enhances diffusion of small acidic molecules resulting in significant pH decrease in the immersion solution. The synergistic reaction between magnesium alloy wires and PLA in the composite is further clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics and a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions. STATEMENT OF SIGNIFICANCE: We systematically study the influence of dynamic loading on the degradation behavior of pure PLA and Mg/PLA. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. The synergistic reaction between magnesium alloy wires and PLA in the composite is firstly clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics. Then, a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions.


Assuntos
Ligas/química , Força Compressiva , Técnicas Eletroquímicas , Magnésio/química , Poliésteres/química
11.
Springerplus ; 5(1): 699, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27350929

RESUMO

The low temperature specific heats of (Fe0.5Co0.5)72B20Si4Nb4 amorphous and crystallized alloys are measured and analyzed from 1.4 to 110 K. Specific heats can be well fitted by electronic and phonon contribution terms. It is found that the electronic contribution term in specific heat for amorphous alloy is larger than that for crystallized one, and this phenomenon has been interpreted in detail. The research shows that the electronic density of states at the Fermi level and the localized loose "rattler" atoms in oversized cage structure may make contributions to the enhancement of electronic specific heat coefficient γ, and result in a larger electronic contribution term. This study is significant for further understanding the structure-property relationship for amorphous alloys at low temperature.

12.
Sci Rep ; 4: 6233, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25167887

RESUMO

Fe-based bulk metallic glasses (BMGs) have attracted great attention due to their unique magnetic and mechanical properties, but few applications have been materialized because of their brittleness at room temperature. Here we report a new Fe(50)Ni(30)P(13)C(7) BMG which exhibits unprecedented compressive plasticity (>20%) at room temperature without final fracture. The mechanism of unprecedented plasticity for this new Fe-based BMG was also investigated. It was discovered that the ductile Fe(50)Ni(30)P(13)C(7) BMG is composed of unique clusters mainly linked by less directional metal-metal bonds which are inclined to accommodate shear strain and absorbed energy in the front of crack tip. This conclusion was further verified by the X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy experiments of Fe(80-x)Ni(x)P(13)C(7) (x = 0, 10, 20, 30) and Fe(72-x)Ni(x)B(20)Si(4)Nb(4) (x = 0, 7.2, 14.4, 21.6, 28.8) glassy systems. The results also indicate a strong correlation between the p-d hybridization and plasticity, verifying that the transition from brittle to ductile induced by Ni addition is due to the change of bonding characteristics in atomic configurations. Thus, we can design the plasticity of Fe-based BMGs and open up a new possible pathway for manufacturing BMGs with high strength and plasticity.

13.
Sci Rep ; 4: 5733, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25043428

RESUMO

The high plasticity of metallic glasses is highly desirable for a wide range of novel engineering applications. However, the physical origin of the ductile/brittle behaviour of metallic glasses with various compositions and thermal histories has not been fully clarified. Here we have found that metallic glasses with compositions at or near intermetallic compounds, in contrast to the ones at or near eutectics, are extremely ductile and also insensitive to annealing-induced embrittlement. We have also proposed a close correlation between the element distribution features and the plasticity of metallic glasses by tracing the evolutions of the element distribution rearrangement and the corresponding potential energy change within the sliding shear band. These novel results provide useful and universal guidelines to search for new ductile metallic glasses at or near the intermetallic compound compositions in a number of glass-forming alloy systems.

14.
J Phys Condens Matter ; 17(37): 5647-5653, 2005 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32397038

RESUMO

Co43Fe20Ta5.5B31.5 bulk glassy alloy has the best glass-forming ability (GFA) among the Co-based glassy alloys, and the highest strength (the compressive true strength σf = 5185 MPa) among all known bulk crystalline and glassy alloys. With the aim of synthesizing new Co-based bulk glassy alloys with much higher strength and much larger GFA, we investigated the effect of Mo and Si additions on the enhancement of σf and GFA in the Co-(Fe, Mo, Ta)-(B, Si) system. The small amount of 2 at.% Mo added to the Co-Fe-Ta-B glassy alloy resulted in obtaining an ultrahigh true fracture strength of 5545 MPa and high Young's modulus (E) of 282 GPa. By further adding 1 and 2 at.% Si, Co-(Fe, Mo, Ta)-(B, Si) bulk glassy alloys were synthesized in the diameter range up to 3 mm, and they exhibited σf of over 4450 MPa and E of over 227 GPa. In addition, the ultrahigh-strength glassy alloys simultaneously exhibited excellent soft magnetic properties, i.e., saturation magnetization of 0.32-0.35 T, low coercive force of 0.7-1.1 A m-1, and high effective permeability of 3.9-4.77 × 104 at 1 kHz. The improvement of GFA and σf is interpreted to result from the enhanced atomic bonding nature by adding Mo and Si.

15.
Nat Mater ; 2(10): 661-3, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14502274

RESUMO

Bulk metallic glasses--formed by supercooling the liquid state of certain metallic alloys--have potentially superior mechanical properties to crystalline materials. Here, we report a Co(43)Fe(20)Ta(5.5)B(31.5) glassy alloy exhibiting ultrahigh fracture strength of 5,185 MPa, high Young's modulus of 268 GPa, high specific strength of 6.0 x 10(5) Nm kg(-1) and high specific Young's modulus of 31 x 10(6) Nm kg(-1). The strength, specific strength and specific Young's modulus are higher than previous values reported for any bulk crystalline or glassy alloys. Excellent formability is manifested by large tensile elongation of 1,400% and large reduction ratio in thickness above 90% in the supercooled liquid region. The ultrahigh-strength alloy also exhibited soft magnetic properties with extremely high permeability of 550,000. This alloy is promising as a new ultrahigh-strength material with good deformability and soft magnetic properties.


Assuntos
Ligas/química , Cobalto/química , Magnetismo , Teste de Materiais , Ligas/síntese química , Força Compressiva , Elasticidade , Movimento (Física) , Estresse Mecânico , Temperatura , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...