Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(3): e2302063, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916920

RESUMO

3D printing technology has revolutionized the field of wound dressings, offering tailored solutions with mechanical support to facilitate wound closure. In addition to personalization, the intricate nature of the wound healing process requires wound dressing materials with diverse properties, such as moisturization, flexibility, adhesion, anti-oxidation and degradability. Unfortunately, current materials used in digital light processing (DLP) 3D printing have been inadequate in meeting these crucial criteria. This study introduces a novel DLP resin that is biocompatible and consists of only three commonly employed non-toxic compounds in biomaterials, that is, dopamine, poly(ethylene glycol) diacrylate, and N-vinylpyrrolidone. Simple as it is, this material system fulfills all essential functions for effective wound healing. Unlike most DLP resins that are non-degradable and rigid, this material exhibits tunable and rapid degradation kinetics, allowing for complete hydrolysis within a few hours. Furthermore, the high flexibility enables conformal application of complex dressings in challenging areas such as finger joints. Using a difficult-to-heal wound model, the manifold positive effects on wound healing in vivo, including granulation tissue formation, inflammation regulation, and vascularization are substantiated. The simplicity and versatility of this material make it a promising option for personalized wound care, holding significant potential for future translation.


Assuntos
Adesivos , Polietilenoglicóis , Cicatrização , Bandagens , Impressão Tridimensional
2.
Thorac Cancer ; 8(5): 495-500, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28755423

RESUMO

BACKGROUND: This study was conducted to investigate the exchange protein directly activated by cAMP (Epac1), PDE4, and PKC expression in breast cancer tissues, and the correlation between these proteins and AKAP95, Cx43, cyclin D2, and cyclin E1. METHODS: PV-9000 two-step immunohistochemistry was used to analyze protein expression. RESULTS: The positive rate of Epac1 protein expression in breast cancer tissues (58%) was higher than in para-carcinoma tissues (10%) (P < 0.05). There were no significant differences in the positive rates of PDE4 and PKC expression between breast cancer and para-carcinoma tissues (P > 0.05). The positive expression rate of PDE4 was higher in the P53 protein positive group compared to the P53 negative group (P < 0.05). Correlations between Epac1 and cyclin D2, PDE4 and cyclin D2, AKAP95 and PKC, Cx43 and PKC, and cyclin D2 and PKC proteins were observed (P < 0.05). CONCLUSION: Epac1 expression in breast cancer tissues was increased, suggesting that the protein may be involved in the development of breast cancer. Correlations between Epac1 and cyclin D2, PDE4 and cyclin D2, AKAP95 and PKC, Cx43 and PKC, and cyclin D2 and PKC proteins suggested synergistic effects among these proteins in the development of breast cancer.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Neoplasias da Mama/metabolismo , Conexina 43/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ciclinas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteína Quinase C/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Ciclina D2/metabolismo , Ciclina E/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Proteínas Oncogênicas/metabolismo , Proteômica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA