Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 202: 105947, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879334

RESUMO

Until recently, chemical pesticides were one of the most effective means of controlling agricultural pests; therefore, the search for insecticide targets for agricultural pests has been an ongoing problem. Estrogen-related receptors (ERRs) are transcription factors that regulate cellular metabolism and energy homeostasis in animals. Silkworms are highly sensitive to chemical pesticides, making them ideal models for pesticide screening and evaluation. In this study, we detected ERR expression in key organs involved in pesticide metabolism in silkworms (Bombyx mori), including the fat body and midgut. Using ChIP-seq technology, many estrogen- related response elements were identified in the 2000-bp promoter region upstream of metabolism-related genes, almost all of which were potential ERR target genes. The ERR inhibitor, XCT-790, and the endocrine disruptor, bisphenol A, significantly inhibited expression of the ERR target genes, BmTreh-1, BmTret-1, BmPK, BmPFK, and BmHK, in the fat bodies of silkworms, resulting in pupation difficulties in silkworm larvae that ultimately lead to death. In addition, based on the clarification that the ERR can bind to XCT-790, as observed through biofilm interferometry, its three-dimensional spatial structure was predicted, and using molecular docking techniques, small-molecule compounds with a stronger affinity for the ERR were identified. In summary, utilizing the powerful metabolic regulatory function of ERR in Lepidoptera pests, the developed small molecule inhibitors of ERR can be used for future control of Lepidoptera pests.


Assuntos
Bombyx , Simulação de Acoplamento Molecular , Fenóis , Receptores de Estrogênio , Animais , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Bombyx/metabolismo , Bombyx/genética , Bombyx/efeitos dos fármacos , Fenóis/farmacologia , Compostos Benzidrílicos/farmacologia , Larva/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Inseticidas/farmacologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Corpo Adiposo/metabolismo , Corpo Adiposo/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Disruptores Endócrinos/metabolismo , Nitrilas , Tiazóis
2.
Front Immunol ; 15: 1377270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585268

RESUMO

Introduction: Signal peptide peptidase (SPP) is an intramembrane protease involved in a variety of biological processes, it participates in the processing of signal peptides after the release of the nascent protein to regulate the endoplasmic reticulum associated degradation (ERAD) pathway, binds misfolded membrane proteins, and aids in their clearance process. Additionally, it regulates normal immune surveillance and assists in the processing of viral proteins. Although SPP is essential for many viral infections, its role in silkworms remains unclear. Studying its role in the silkworm, Bombyx mori , may be helpful in breeding virus-resistant silkworms. Methods: First, we performed RT-qPCR to analyze the expression pattern of BmSPP. Subsequently, we inhibited BmSPP using the SPP inhibitor 1,3-di-(N-carboxybenzoyl-L-leucyl-L-leucylaminopropanone ((Z-LL)2-ketone) and downregulated the expression of BmSPP using CRISPR/Cas9 gene editing. Furthermore, we assessed the impact of these interventions on the proliferation of Bombyx mori nucleopolyhedrovirus (BmNPV). Results: We observed a decreased in the expression of BmSPP during viral proliferation. It was found that higher concentration of the inhibitor resulted in greater inhibition of BmNPV proliferation. The down-regulation of BmSPP in both in vivo and in vitro was found to affect the proliferation of BmNPV. In comparison to wild type silkworm, BmSPPKO silkworms exhibited a 12.4% reduction in mortality rate. Discussion: Collectively, this work demonstrates that BmSPP plays a negative regulatory role in silkworm resistance to BmNPV infection and is involved in virus proliferation and replication processes. This finding suggests that BmSPP servers as a target gene for BmNPV virus resistance in silkworms and can be utilized in resistance breeding programs.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/genética , Edição de Genes , Regulação para Baixo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...