Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(20): eadg4159, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205753

RESUMO

Diamond shows unprecedented hardness. Because hardness is a measure of resistance of chemical bonds in a material to external indentation, the electronic bonding nature of diamond beyond several million atmospheres is key to understanding the origin of hardness. However, probing the electronic structures of diamond at such extreme pressure has not been experimentally possible. The measurements on the inelastic x-ray scattering spectra for diamond up to 2 million atmospheres provide data on the evolution of its electronic structures under compression. The mapping of the observed electronic density of states allows us to obtain a two-dimensional image of the bonding transitions of diamond undergoing deformation. The spectral change near edge onset is minor beyond a million atmospheres, while its electronic structure displays marked pressure-induced electron delocalization. Such electronic responses indicate that diamond's external rigidity is supported by its ability to reconcile internal stress, providing insights into the origins of hardness in materials.

2.
J Phys Chem Lett ; 14(2): 508-515, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36626164

RESUMO

Metallophilicity has been widely studied as a fundamental supramolecular interaction. However, the extent and directionality thereof remain controversial. A major obstacle lies in the difficulty to separately control the geometry and chemical composition. Herein, we address this challenge by modulating metallophilicity with mechanical pressure. Using a multinuclear Cu(I) complex as model system, we report anomalous anisotropies of (supra)molecular structures, vibrations, and interaction energies upon isotropic compression as well as concomitant (essentially turn-on) piezochromic luminescence enhancement with ∼103 modulation. The in situ characterizations indicate opposite behaviors of contact distances and cuprophilic interactions for intermolecular vs intramolecular Cu-Cu pairs under pressure. Theoretical calculations break down the attractive and repulsive forces associated with cuprophilicity, its spontaneous 4p-3d hybridization origin, and direction-dependent interaction strength. The use of isotropic mechanical force reveals the intrinsic anisotropy of metallophilicity in multinuclear systems.

3.
Nano Lett ; 23(1): 132-139, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36577713

RESUMO

The ability to gradually modify the atomic structures of nanomaterials and directly identify such structural variation is important in nanoscience research. Here, we present the first example of a high-pressure single-crystal X-ray diffraction analysis of atomically precise metal nanoclusters. The pressure-dependent, subangstrom structural evolution of an ultrasmall gold nanoparticle, Au25S18, has been directly identified. We found that a 0.1 Å decrease of the Au-Au bond length could induce a blue-shift of 30 nm in the photoluminescence spectra of gold nanoclusters. From theoretical calculations, the origins of the blue-shift and enhanced photoluminescence under pressure are investigated, which are ascribed to molecular orbital symmetry and conformational locking, respectively. The combination of the high-pressure in situ X-ray results with both theoretical and experimental optical spectra provides a direct and generalizable avenue to unveil the underlying structure-property relations for nanoclusters and nanoparticles which cannot be obtained through traditional physical chemistry measurements.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Cristalografia por Raios X
4.
Phys Chem Miner ; 49(9): 36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992384

RESUMO

High-Pressure Collaborative Access Team (HPCAT) is a synchrotron-based facility located at the Advanced Photon Source (APS). With four online experimental stations and various offline capabilities, HPCAT is focused on providing synchrotron x-ray capabilities for high pressure and temperature research and supporting a broad user community. Overall, the array of online/offline capabilities is described, including some of the recent developments for remote user support and the concomitant impact of the current pandemic. General overview of work done at HPCAT and with a focus on some of the minerals relevant work and supporting capabilities is also discussed. With the impending APS-Upgrade (APS-U), there is a considerable effort within HPCAT to improve and add capabilities. These are summarized briefly for each of the end-stations.

5.
Phys Rev Lett ; 129(2): 025701, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867445

RESUMO

High-pressure single-crystal x-ray diffraction is used to experimentally map the electron-density distribution changes in (Fe,Mg)O as ferrous iron undergoes a pressure-induced transition from high- to low-spin states. As the bulk density and elasticity of magnesiowüstite-one of the dominant mineral phases of Earth's mantle-are affected by this electronic transition, our results have applications to geophysics as well as to validating first-principles calculations. The observed changes in diffraction intensities indicate a spin-transition-induced change in orbital occupancies of the Fe ion in general accord with crystal-field theory, illustrating the use of electron density measurements for characterizing high-pressure d-block chemistry and motivating further studies characterizing chemical bonding under pressure.

6.
J Am Chem Soc ; 144(22): 10025-10033, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616519

RESUMO

Noncrystalline oxides under pressure undergo gradual structural modifications, highlighted by the formation of a dense noncrystalline network topology. The nature of the densified networks and their electronic structures at high pressures may account for the mechanical hardening and the anomalous changes in electromagnetic properties. Despite its importance, direct probing of the electronic structures in amorphous oxides under compression above the Mbar pressure (>100 GPa) is currently lacking. Here, we report the observation of pressure-driven changes in electronic configurations and their delocalization around oxygen in glasses using inelastic X-ray scattering spectroscopy (IXS). In particular, the first O K-edge IXS spectra for compressed GeO2 glass up to 148 GPa, the highest pressure ever reached in an experimental study of GeO2 glass, reveal that the glass densification results from a progressive increase of oxygen proximity. While the triply coordinated oxygen [3]O is dominant below ∼50 GPa, the IXS spectra resolve multiple edge features that are unique to topologically disordered [4]O upon densification above 55 GPa. Topological compaction in GeO2 glass above 100 GPa results in pronounced electronic delocalization, revealing the contribution from Ge d-orbitals to oxide densification. Strong correlations between the glass density and the electronic configurations beyond the Mbar conditions highlight the electronic origins of densification of heavy-metal-bearing oxide glasses. Current experimental breakthroughs shed light on the direct probing of the electronic density of states in high-Z oxides above 1 Mbar, offering prospects for studies on the pressure-driven changes in magnetism, superconductivity, and electronic transport properties in heavy-metal-bearing oxides under compression.

7.
Materials (Basel) ; 15(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35591574

RESUMO

The high-entropy transition metal borides containing a random distribution of five or more constituent metallic elements offer novel opportunities in designing materials that show crystalline phase stability, high strength, and thermal oxidation resistance under extreme conditions. We present a comprehensive theoretical and experimental investigation of prototypical high-entropy boride (HEB) materials such as (Hf, Mo, Nb, Ta, Ti)B2 and (Hf, Mo, Nb, Ta, Zr)B2 under extreme environments of pressures and temperatures. The theoretical tools include modeling elastic properties by special quasi-random structures that predict a bulk modulus of 288 GPa and a shear modulus of 215 GPa at ambient conditions. HEB samples were synthesized under high pressures and high temperatures and studied to 9.5 GPa and 2273 K in a large-volume pressure cell. The thermal equation of state measurement yielded a bulk modulus of 276 GPa, in excellent agreement with theory. The measured compressive yield strength by radial X-ray diffraction technique in a diamond anvil cell was 28 GPa at a pressure of 65 GPa, which is a significant fraction of the shear modulus at high pressures. The high compressive strength and phase stability of this material under high pressures and high temperatures make it an ideal candidate for application as a structural material in nuclear and aerospace fields.

8.
Phys Rev Lett ; 126(3): 036402, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543962

RESUMO

Metallization of hydrogen as a key problem in modern physics is the pressure-induced evolution of the hydrogen electronic band from a wide-gap insulator to a closed gap metal. However, due to its remarkably high energy, the electronic band gap of insulating hydrogen has never before been directly observed under pressure. Using high-brilliance, high-energy synchrotron radiation, we developed an inelastic x-ray probe to yield the hydrogen electronic band information in situ under high pressures in a diamond-anvil cell. The dynamic structure factor of hydrogen was measured over a large energy range of 45 eV. The electronic band gap was found to decrease linearly from 10.9 to 6.57 eV, with an 8.6 times densification (ρ/ρ_{0}∼8.6) from zero pressure up to 90 GPa.

9.
Nano Lett ; 21(3): 1427-1433, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502867

RESUMO

Silicon has several technologically promising allotropes that are formed via high-pressure synthesis. One of these phases (hd) has been predicted to have a direct band gap under tensile strain, whereas other (r8 and bc8) phases are predicted to have narrow band gaps and good absorption across the solar spectrum. Pure volumes of these phases cannot be made using conventional nanowire growth techniques. In this work, Si nanowires were compressed up to ∼20 GPa and then decompressed using a diamond anvil cell in the temperature range of 25-165 °C. It was found that at intermediate temperatures, near-phase-pure bc8-Si nanowires were produced, whereas amorphous Si (a-Si) dominated at lower temperatures, and a direct transformation to the diamond cubic phase (dc-Si) occurred at higher temperatures under compression. Thus this study has opened up a new pressure-temperature pathway for the synthesis of novel Si nanowires consisting of designed phase components with transformative properties.

10.
Phys Rev Lett ; 125(20): 205701, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258638

RESUMO

Pair distribution function measurement of SiO_{2} glass up to 120 GPa reveals changes in the first-, second-, and third-neighbor distances associated with an increase in Si coordination number C_{Si} to >6 above 95 GPa. Packing fractions of Si and O determined from the first- and second-neighbor distances show marked changes accompanied with the structural evolution from C_{Si}=6 to >6. Structural constraints in terms of ionic radius ratio of Si and O, and ratio of nonbonded radius to bonded Si─O distance support the structural evolution of SiO_{2} glass with C_{Si}>6 at high pressures.

11.
J Phys Chem B ; 124(33): 7258-7262, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32692917

RESUMO

We have experimentally studied the effect of compression on the structure of liquid lithium (Li) by multiangle energy dispersive X-ray diffraction in a large-volume cupped-Drickamer-Toroidal cell. The structure factors, s(q), of liquid Li have been successfully determined under an isothermal compression at 600 ± 30 K and at pressures up to 11.5 GPa. The first peak position in s(q) is found to increase with increasing pressure and is showing an obvious slope change starting at ∼7.5 GPa. The slope change is interpreted as a structural change from bcc-like to fcc-like local ordering in liquid Li. At pressures above 8.7 GPa, the liquid Li becomes predominantly fcc-like up to the highest pressure of 11.5 GPa in this study. The observed structural changes in liquid Li are consistent with the recently determined melting curve of Li.

12.
Sci Adv ; 6(23): eaba9206, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537513

RESUMO

Group V elements in crystal structure isostructural to black phosphorus with unique puckered two-dimensional layers exhibit exciting physical and chemical phenomena. However, as the first element of group V, nitrogen has never been found in the black phosphorus structure. Here, we report the synthesis of the black phosphorus-structured nitrogen at 146 GPa and 2200 K. Metastable black phosphorus-structured nitrogen was retained after quenching it to room temperature under compression and characterized in situ during decompression to 48 GPa, using synchrotron x-ray diffraction and Raman spectroscopy. We show that the original molecular nitrogen is transformed into extended single-bonded structure through gauche and trans conformations. Raman spectroscopy shows that black phosphorus-structured nitrogen is strongly anisotropic and exhibits high Raman intensities in two A g normal modes. Synthesis of black phosphorus-structured nitrogen provides a firm base for exploring new type of high-energy-density nitrogen and a new direction of two-dimensional nitrogen.

13.
J Phys Chem Lett ; 11(2): 374-379, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31867974

RESUMO

Knowledge of the structure in amorphous dioxides is important in many fields of science and engineering. Here we report new experimental results of high-pressure polyamorphism in amorphous TiO2 (a-TiO2). Our data show that the Ti coordination number (CN) increases from 7.2 ± 0.3 at ∼16 GPa to 8.8 ± 0.3 at ∼70 GPa and finally reaches a plateau at 8.9 ± 0.3 at ≲86 GPa. The evolution of the structural changes under pressure is rationalized by the ratio (γ) of the ionic radius of Ti to that of O. It appears that the CN ≈ 9 plateau correlates with the two 9-fold coordinated polymorphs (cotunnite, Fe2P) with different γ values. This CN-γ relationship is compared with those of a-SiO2 and a-GeO2, displaying remarkably consistent behavior between CN and γ. The unified CN-γ relationship may be generally used to predict the compression behavior of amorphous AO2 compounds under extreme conditions.

14.
Phys Rev Lett ; 123(23): 235701, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868455

RESUMO

As oxygen may occupy a major volume of oxides, a densification of amorphous oxides under extreme compression is dominated by reorganization of oxygen during compression. X-ray Raman scattering (XRS) spectra for SiO_{2} glass up to 1.6 Mbar reveal the evolution of heavily contracted oxygen environments characterized by a decrease in average O-O distance and the potential emergence of quadruply coordinated oxygen (oxygen quadcluster). Our results also reveal that the edge energies at the centers of gravity of the XRS features increase linearly with bulk density, yielding the first predictive relationship between the density and partial density of state of oxides above megabar pressures. The extreme densification paths with densified oxygen in amorphous oxides shed light upon the possible existence of stable melts in the planetary interiors.

15.
Sci Rep ; 9(1): 15712, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672999

RESUMO

We report a synchrotron Laue diffraction study on the microstructure evolution in zirconium (Zr) as it undergoes a pressure-driven structural phase transformation, using a recently developed real time scanning x-ray microscopy technique. Time resolved characterizations of microstructure under high pressure show that Zr exhibits a grain enlargement across the α-Zr to ω-Zr structural phase transition at room-temperature, with nucleation and growth of ω-Zr crystals observed from initially a nano-crystalline aggregate of α-Zr. The observed grain enlargement is unusual since the enlargement processes typically require substantially high temperature to overcome the activation barriers for forming and moving of grain boundaries. Possible mechanisms for the grain enlargement are discussed.

16.
Nature ; 573(7775): 558-562, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31554980

RESUMO

High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal1, which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate2,3. Therefore, understanding such transitions remains an important objective in condensed matter physics4,5. However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close-packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetry breaking.


Assuntos
Hidrogênio/química , Modelos Moleculares , Pressão , Eletrônica , Difração de Nêutrons , Transição de Fase , Difração de Raios X
17.
J Chem Phys ; 150(24): 244201, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255054

RESUMO

Amorphous-amorphous transformations in H2O have been studied under rapid isothermal compression and decompression in a diamond anvil cell together with in situ x-ray diffraction measurements using brilliant synchrotron radiation. The experimental pathways provide a density-driven approach for studying polyamorphic relations among low-, high-, and very high-density amorphs (LDA, HDA, VHDA) in a pressure range of 0-3.5 GPa at temperatures of 145-160 K. Our approach using rapid (de)compression allows for studying the polyamorphic transformations at higher temperatures than the conditions previously studied under slow (de)compression or isobaric annealing. Multiple compression-decompression cycles can be integrated with in situ x-ray measurements, thus facilitating the study of repeatability and reversibility of the polyamorphic transformations. Fast in situ x-ray diffraction measurements allow for obtaining detailed insight into the structural changes across polyamorphic transformations regarding the (dis)continuity, reversibility, and possible intermediate forms. As demonstrated at isothermal conditions of 145 K and 155 K, the polyamorphic transformations are characterized by a sharp and reversible LDA-VHDA transformation, with an HDA-like form (referred to as HDA') appearing as an intermediate state. The LDA-VHDA transformation is found to occur in two steps: a discontinuous transition between LDA and HDA' and a continuous change within HDA' involving structural reconfigurations and finally converging to VHDA.

18.
Sci Rep ; 9(1): 7531, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101893

RESUMO

Amorphous diamond, formed by high-pressure compression of glassy carbon, is of interests for new carbon materials with unique properties such as high compressive strength. Previous studies attributed the ultrahigh strength of the compressed glassy carbon to structural transformation from graphite-like sp2-bonded structure to diamond-like sp3-bonded structure. However, there is no direct experimental determination of the bond structure of the compressed glassy carbon, because of experimental challenges. Here we succeeded to experimentally determine pair distribution functions of a glassy carbon at ultrahigh pressures up to 49.0 GPa by utilizing our recently developed double-stage large volume cell. Our results show that the C-C-C bond angle in the glassy carbon remains close to 120°, which is the ideal angle for the sp2-bonded honey-comb structure, up to 49.0 GPa. Our data clearly indicate that the glassy carbon maintains graphite-like structure up to 49.0 GPa. In contrast, graphene interlayer distance decreases sharply with increasing pressure, approaching values of the second neighbor C-C distance above 31.4 GPa. Linkages between the graphene layers may be formed with such a short distance, but not in the form of tetrahedral sp3 bond. The unique structure of the compressed glassy carbon may be the key to the ultrahigh strength.

19.
Rev Sci Instrum ; 90(2): 025109, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831723

RESUMO

We have designed and implemented a new experimental system for fast mapping of crystal structures and other structural features of materials under high pressure at the High Pressure Collaborative Access Team, Sector 16 of the Advanced Photon Source. The system utilizes scanning X-ray diffraction microscopy (SXDM) and is optimized for use with diamond anvil cell devices. In SXDM, the X-ray diffraction (XRD) is collected in a forward scattering geometry from points on a two-dimensional grid by fly-scanning the sample with respect to a micro-focused X-ray beam. The recording of XRD is made during the continuous motion of the sample using a fast (millisecond) X-ray area detector in synchrony with the sample positioners, resulting in a highly efficient data collection for SXDM. A new computer program, X-ray Diffractive Imaging (XDI), has been developed with the SXDM system. The XDI program provides a graphical interface for constructing and displaying the SXDM images in several modes: (1) phase mapping based on structural information, (2) pressure visualization based on the equation of state, (3) microstructural features mapping based on peak shape parameters, and (4) grain size and preferred-orientation based on peak shape parameters. The XDI is a standalone program and can be generally used for displaying SXDM images. Two examples of iron and zirconium samples under high pressure are presented to demonstrate the applications of SXDM.

20.
Rev Sci Instrum ; 90(1): 015116, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709214

RESUMO

The hardware and software used to execute fly scans at Sector 16 of the Advanced Photon Source are described. The system design and capabilities address dimensions and time scales relevant to samples in high pressure diamond anvil cells. The time required for routine sample positioning and centering is significantly reduced, and more importantly, the time savings associated with fly scanning make it feasible for users to routinely generate two-dimensional x-ray transmission and x-ray diffraction maps. Consequently, this facilitates an important shift in high pressure research as experimentalists embrace the study of heterogeneous and minute sample volumes in the diamond anvil cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...