Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2778: 273-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478284

RESUMO

The ß-barrel assembly machinery (BAM) complex in Gram-negative bacteria facilitates the assembly of ß-barrel proteins into the outer membrane. Understanding the protein-protein interactions within this complex is essential for unravelling its functional mechanisms. Here, we present the use of neutron reflectometry for investigating the organization of ß-barrel membrane protein complexes in the membrane environment. The spatial organization, protein positioning, protein-lipid interactions, and conformational changes within the complex can be elucidated by this method.

2.
ACS Nano ; 18(5): 4478-4494, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266175

RESUMO

The waning pipeline of the useful antibacterial arsenal has necessitated the urgent development of more effective antibacterial strategies with distinct mechanisms to rival the continuing emergence of resistant pathogens, particularly Gram-negative bacteria, due to their explicit drug-impermeable, two-membrane-sandwiched cell wall envelope. Herein, we have developed multicomponent coassembled nanoparticles with strong bactericidal activity and simultaneous bacterial cell envelope targeting using a peptide coassembly strategy. Compared to the single-component self-assembled nanoparticle counterparts or cocktail mixtures of these at a similar concentration, coassembled multicomponent nanoparticles showed higher bacterial killing efficiency against Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli by several orders of magnitude (about 100-1,000,000-fold increase). Comprehensive confocal and electron microscopy suggest that the superior antibacterial activity of the coassembled nanoparticles proceeds via multiple complementary mechanisms of action, including membrane destabilization, disruption, and cell wall hydrolysis, actions that were not observed with the single nanoparticle counterparts. To understand the fundamental working mechanisms behind the improved performance of coassembled nanoparticles, we utilized a "dilution effect" system where the antibacterial components are intermolecularly mixed and coassembled with a non-antibacterial protein in the nanoparticles. We suggest that coassembled nanoparticles mediate enhanced bacterial killing activity by attributes such as optimized local concentration, high avidity, cooperativity, and synergy. The nanoparticles showed no cytotoxic or hemolytic activity against tested eukaryotic cells and erythrocytes. Collectively, these findings reveal potential strategies for disrupting the impermeable barrier that Gram-negative pathogens leverage to restrict antibacterial access and may serve as a platform technology for potential nano-antibacterial design to strengthen the declining antibiotic arsenal.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Bactérias , Bactérias Gram-Negativas , Membrana Celular , Escherichia coli , Testes de Sensibilidade Microbiana
3.
Small Methods ; 8(2): e2300429, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37381684

RESUMO

Over the past few decades, organic-inorganic halide perovskites (OIHPs) as novel photocatalyst materials have attracted intensive attention for an impressive variety of photocatalytic applications due to their excellent photophysical (chemical) properties. Regarding practical application and future commercialization, the air-water stability and photocatalytic performance of OIHPs need to be further improved. Accordingly, studying modification strategies and interfacial interaction mechanisms is crucial. In this review, the current progress in the development and photocatalytic fundamentals of OIHPs is summarized. Furthermore, the structural modification strategies of OIHPs, including dimensionality control, heterojunction design, encapsulation techniques, and so on for the enhancement of charge-carrier transfer and the enlargement of long-term stability, are elucidated. Subsequently, the interfacial mechanisms and charge-carrier dynamics of OIHPs during the photocatalytic process are systematically specified and classified via diverse photophysical and electrochemical characterization methods, such as time-resolved photoluminescence measurements, ultrafast transient absorption spectroscopy, electrochemical impedance spectroscopy measurements, transient photocurrent densities, and so forth. Eventually, various photocatalytic applications of OIHPs, including hydrogen evolution, CO2 reduction, pollutant degradation, and photocatalytic conversion of organic matter.

4.
Comput Biol Med ; 168: 107681, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992470

RESUMO

The multidrug-resistant Gram-negative bacteria has evolved into a worldwide threat to human health; over recent decades, polymyxins have re-emerged in clinical practice due to their high activity against multidrug-resistant bacteria. Nevertheless, the nephrotoxicity and neurotoxicity of polymyxins seriously hinder their practical use in the clinic. Based on the quantitative structure-activity relationship (QSAR), analogue design is an efficient strategy for discovering biologically active compounds with fewer adverse effects. To accelerate the polymyxin analogues discovery process and find the polymyxin analogues with high antimicrobial activity against Gram-negative bacteria, here we developed PmxPred, a GCN and catBoost-based machine learning framework. The RDKit descriptors were used for the molecule and residues representation, and the ensemble learning model was utilized for the antimicrobial activity prediction. This framework was trained and evaluated on multiple Gram-negative bacteria datasets, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and a general Gram-negative bacteria dataset achieving an AUROC of 0.857, 0.880, 0.756, 0.895 and 0.865 on the independent test, respectively. PmxPred outperformed the transfer learning method that trained on 10 million molecules. We interpreted our model well-trained model by analysing the importance of global and residue features. Overall, PmxPred provides a powerful additional tool for predicting active polymyxin analogues, and holds the potential elucidate the mechanisms underlying the antimicrobial activity of polymyxins. The source code is publicly available on GitHub (https://github.com/yanwu20/PmxPred).


Assuntos
Infecções por Bactérias Gram-Negativas , Polimixinas , Humanos , Polimixinas/farmacologia , Polimixinas/química , Antibacterianos/química , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Bactérias Gram-Negativas , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Testes de Sensibilidade Microbiana
5.
Small ; 20(6): e2305052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798622

RESUMO

The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.


Assuntos
Nanopartículas , Polimixina B , Polimixina B/farmacologia , Lipossomos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Klebsiella pneumoniae , Polissacarídeos Bacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
6.
Nanomaterials (Basel) ; 13(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836274

RESUMO

In this study, Pt nanoparticles-loaded nitrogen-doped mesoporous carbon nanotube (Pt/NMCT) was successfully synthesized through a polydopamine-mediated "one-pot" co-deposition strategy. The Pt source was introduced during the co-deposition of polydopamine and silica on the surface of SiO2 nanowire (SiO2 NW), and Pt atoms were fixed in the skeleton by the chelation of polydopamine. Thus, in the subsequent calcination process in nitrogen atmosphere, the growth and agglomeration of Pt nanoparticles were effectively restricted, achieving the in situ loading of uniformly dispersed, ultra-small (~2 nm) Pt nanoparticles. The method is mild, convenient, and does not require additional surfactants, reducing agents, or stabilizers. At the same time, the use of the dual silica templates (SiO2 NW and the co-deposited silica nanoclusters) brought about a hierarchical pore structure with a high specific surface area (620 m2 g-1) and a large pore volume (1.46 cm3 g-1). The loading process of Pt was studied by analyzing the electron microscope and X-ray photoelectron spectroscopy of the intermediate products. The catalytic performance of Pt/NMCT was investigated in the reduction of 4-nitrophenol. The Pt/NMCT with a hierarchical pore structure had an apparent reaction rate constant of 0.184 min-1, significantly higher than that of the sample, without the removal of the silica templates to generate the hierarchical porosity (0.017 min-1). This work provides an outstanding contribution to the design of supported noble metal catalysts and also highlights the importance of the hierarchical pore structure for catalytic activity.

7.
ACS Appl Mater Interfaces ; 15(34): 40292-40303, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37603686

RESUMO

Ischemia/reperfusion (I/R) injury causes excessive oxidative events and initiates destructive inflammatory responses, and it is an important promoter to the pathology of various pathema states. Ferroptosis is an iron-dependent type of nonapoptotic cell death accompanied by the accumulation of membrane lipid peroxide and consumption of polyunsaturated fatty acid, and it plays a key role in I/R injury diseases. Moreover, the excessive production of inflammatory cytokines contributes to the development of acute kidney injury. Here, we reported neutrophil membrane-coated copper-based nanoparticles (N-Cu5.4O@DFO NPs) for I/R kidney injury treatment. The highly biocompatible and stable N-Cu5.4O@DFO NPs showed excellent antioxidant and iron ion scavenging abilities in vitro. Our finding showed that the N-Cu5.4O@DFO NPs strategy could significantly accumulate in the inflammatory kidney, reduce oxidative damage events and inflammatory response, and finally achieve synergistic therapy against renal I/R injury. This work promotes the development of nanoantioxidant agents with multiple antioxidant properties for the therapy of other I/R injury diseases.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Antioxidantes/farmacologia , Cobre , Neutrófilos , Injúria Renal Aguda/tratamento farmacológico , Rim , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia , Reperfusão , Ferro
8.
Mater Today Bio ; 21: 100716, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37545557

RESUMO

Renal fibrosis is a pathological feature of chronic kidney disease and its progression correlates with kidney function impairment. Since there are currently no specific therapies for renal fibrosis, we explored whether inducing local production of the anti-fibrotic molecule relaxin-2 in kidney cells has potential as a strategy for suppressing the development of renal fibrosis. Our study examined whether delivery of relaxin-2 mRNA to kidney cells in vitro and in vivo could inhibit mechanisms leading to renal fibrosis. Transfecting relaxin-2 mRNA into cultured kidney cells inhibited fibrotic responses to TGF-ß1 in an autocrine or paracrine manner by reducing fibrotic gene expression in kidney tubules, and reducing proliferation in kidney fibroblasts and mesangial cells. Similarly, cubosomes assisted delivery of relaxin-2 mRNA to mouse kidneys alleviated the fibrosis and inflammation associated with renal injury following unilateral ureter obstruction (UUO). Therefore, relaxin-2 mRNA exhibits potential as a novel therapy for inhibiting fibrosis and inflammation in chronic kidney disease.

9.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369638

RESUMO

Antimicrobial peptides (AMPs) are short peptides that play crucial roles in diverse biological processes and have various functional activities against target organisms. Due to the abuse of chemical antibiotics and microbial pathogens' increasing resistance to antibiotics, AMPs have the potential to be alternatives to antibiotics. As such, the identification of AMPs has become a widely discussed topic. A variety of computational approaches have been developed to identify AMPs based on machine learning algorithms. However, most of them are not capable of predicting the functional activities of AMPs, and those predictors that can specify activities only focus on a few of them. In this study, we first surveyed 10 predictors that can identify AMPs and their functional activities in terms of the features they employed and the algorithms they utilized. Then, we constructed comprehensive AMP datasets and proposed a new deep learning-based framework, iAMPCN (identification of AMPs based on CNNs), to identify AMPs and their related 22 functional activities. Our experiments demonstrate that iAMPCN significantly improved the prediction performance of AMPs and their corresponding functional activities based on four types of sequence features. Benchmarking experiments on the independent test datasets showed that iAMPCN outperformed a number of state-of-the-art approaches for predicting AMPs and their functional activities. Furthermore, we analyzed the amino acid preferences of different AMP activities and evaluated the model on datasets of varying sequence redundancy thresholds. To facilitate the community-wide identification of AMPs and their corresponding functional types, we have made the source codes of iAMPCN publicly available at https://github.com/joy50706/iAMPCN/tree/master. We anticipate that iAMPCN can be explored as a valuable tool for identifying potential AMPs with specific functional activities for further experimental validation.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Aprendizado Profundo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Antibacterianos , Algoritmos
10.
Nanomaterials (Basel) ; 13(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049350

RESUMO

Supercapacitors are candidates with the greatest potential for use in sustainable energy resources. Extensive research is being carried out to improve the performances of state-of-art supercapacitors to meet our increased energy demands because of huge technological innovations in various fields. The development of high-performing materials for supercapacitor components such as electrodes, electrolytes, current collectors, and separators is inevitable. To boost research in materials design and production toward supercapacitors, the up-to-date collection of recent advancements is necessary for the benefit of active researchers. This review summarizes the most recent developments of water-in-salt (WIS) and deep eutectic solvents (DES), which are considered significant electrolyte systems to advance the energy density of supercapacitors, with a focus on two-dimensional layered nanomaterials. It provides a comprehensive survey of 2D materials (graphene, MXenes, and transition-metal oxides/dichalcogenides/sulfides) employed in supercapacitors using WIS/DES electrolytes. The synthesis and characterization of various 2D materials along with their electrochemical performances in WIS and DES electrolyte systems are described. In addition, the challenges and opportunities for the next-generation supercapacitor devices are summarily discussed.

11.
Adv Mater ; 35(30): e2302409, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37120846

RESUMO

Protein-based nanomaterials have broad applications in the biomedical and bionanotechnological sectors owing to their outstanding properties such as high biocompatibility and biodegradability, structural stability, sophisticated functional versatility, and being environmentally benign. They have gained considerable attention in drug delivery, cancer therapeutics, vaccines, immunotherapies, biosensing, and biocatalysis. However, so far, in the battle against the increasing reports of antibiotic resistance and emerging drug-resistant bacteria, unique nanostructures of this kind are lacking, hindering their potential next-generation antibacterial agents. Here, the discovery of a class of supramolecular nanostructures with well-defined shapes, geometries, or architectures (termed "protein nanospears") based on engineered proteins, exhibiting exceptional broad-spectrum antibacterial activities, is reported. The protein nanospears are engineered via spontaneous cleavage-dependent or precisely tunable self-assembly routes using mild metal salt-ions (Mg2+ , Ca2+ , Na+ ) as a molecular trigger. The nanospears' dimensions collectively range from entire nano- to micrometer scale. The protein nanospears display exceptional thermal and chemical stability yet rapidly disassemble upon exposure to high concentrations of chaotropes (>1 mm sodium dodecyl sulfate (SDS)). Using a combination of biological assays and electron microscopy imaging, it is revealed that the nanospears spontaneously induce rapid and irreparable damage to bacterial morphology via a unique action mechanism provided by their nanostructure and enzymatic action, a feat inaccessible to traditional antibiotics. These protein-based nanospears show promise as a potent tool to combat the growing threats of resistant bacteria, inspiring a new way to engineer other antibacterial protein nanomaterials with diverse structural and dimensional architectures and functional properties.


Assuntos
Antibacterianos , Nanoestruturas , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Bactérias
12.
J Colloid Interface Sci ; 629(Pt B): 166-178, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152574

RESUMO

In this work, a novel acetamide-based deep eutectic solvent (DES) with Zn2+/ Li+ dual ions is designed and its physicochemical properties are tuned by adjusting the co-solvents (water and acetonitrile). Furthermore, the interplay between electrolyte components is investigated by spectroscopic analyses and molecular dynamics calculations. The addition of acetonitrile facilitates the formation of solid electrolyte interphase (SEI) with organic/inorganic components on the zinc anode. The presence of SEI coating enhances Coulombic efficiency and cycling stability by inhibiting the parasitic reactions and dendrite formation in the anode. The advantages of using dual cations in DES are demonstrated by assembling Zn ion batteries (ZIB) with the composite of δ-MnO2 and reduced graphene oxide as the cathode. The study of electrode kinetics in hybrid DES electrolytes suggests that Zn2+ and Li+ ions are responsible for battery-like and pseudocapacitive behavior of δ-MnO2 electrodes, respectively. With these merits, ZIB with the cutoff voltage of 2 V delivers a high cell capacity of 208 mAh g-1 at 0.1 Ag-1 and achieves 91% capacity retention after 1500 cycles at 2 Ag-1. More importantly, ZIB with hybrid DES is stably operated at the temperature of -20 °C, which is impossibly achieved by ZIB with conventional aqueous electrolytes.

13.
Nanomaterials (Basel) ; 12(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364631

RESUMO

Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.

14.
ACS Appl Bio Mater ; 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194892

RESUMO

Antibiotic resistance represents a serious global health concern and has stimulated the development of antimicrobial nanomaterials to combat resistant bacteria. Protein-based nanoparticles combining characteristics of both proteins and nanoparticles offer advantages including high biocompatibility, attractive biodegradability, enhanced bioavailability and functional versatility. They have played an increasing role as promising candidates for broad applications ranging from biocatalysts and drug delivery to vaccine development to cancer therapeutics. However, their application as antibacterial biomaterials to address challenging antibiotic-resistance problems has not been explicitly pursued. Herein, we describe engineering protein-only nanoparticles against resistant Gram-positive bacteria. A self-assembling peptide (P114) enables the assembly of a phage lytic enzyme (P128) into nanoparticles in response to pH reduction. Compared to native P128 and monomeric P114-P128, P128 nanoparticles (P128NANO) demonstrated a stronger bactericidal ability with high potency at lower concentrations (2-3-fold lower), particularly for methicillin-resistant Staphylococcus aureus strains. In addition, P128NANO showed an enhanced thermal (up to 65 °C) and storage stability and elicited extensive damages to bacterial cell walls. These remarkable antibacterial abilities are likely due to the P128NANO nanostructure, mediating multivalent interactions with bacterial cell walls at increased local concentrations of endolysin. The engineered endolysin nanoparticles offer a promising antimicrobial alternative to conventional antibiotics.

15.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295664

RESUMO

Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance.

16.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080091

RESUMO

Covalent organic frameworks (COF), a class of emerging microporous polymers, have been restrained for drug delivery applications due to their limited controllability over particle sizes and degradability. Herein, a dendritic mesoporous silica nanosphere (DMSN)-mediated growth strategy is proposed to fabricate hierarchical DMSN@COF hybrids through in situ growing of 1,3,5-tris(4-aminophenyl)benzene and 2,5-dimethoxyterephthaldehyde connected COF with acid cleavable C=N bonds. After the removal of the DMSN template, COF hierarchical particles (COF HP) with tailored particle sizes and degradability were obtained. Notably, the COF HP could be degraded by 55% after 24 h of incubation at pH 5.5, whereas the counterpart bulk COF only showed 15% of degradation in the same conditions. Due to the improved porosity and surface area, the COF HP can be utilized to load the chemotherapeutic drug, doxorubicin (DOX), with a high loading (46.8 wt%), outperforming the bulk COF (32.1 wt%). Moreover, around 90% of the loaded DOX can be discharged from the COF HP within 8 h of incubation at pH 5.5, whereas, only ~55% of the loaded DOX was released from the bulk COF. Cell experiments demonstrated that the IC50 value of the DOX loaded in COF HP was 2-3 times lower than that of the DOX loaded in the bulk COF and the hybrid DMSN@COF. Attributed to the high loading capacity and more pH-labile particle deconstruction properties, COF HP shows great potential in the application as vehicles for drug delivery.

17.
ACS Appl Mater Interfaces ; 14(33): 37369-37379, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35951370

RESUMO

Nitric oxide (NO)-releasing nanoparticles are effective nanomedicines with diverse therapeutic advantages compared with small molecule-based NO donors. Here, we report a new class of furoxan-based NO-releasing nanoparticles using a simple, creative yet facile coassembly approach. This is the first time we demonstrated that the coassembled NO-releasing nanoparticles with poly(ethylene glycol)101-block-poly(propylene glycol)56-block-poly(ethylene glycol)101 (Pluronic F127) had potent antimicrobial efficacies against methicillin-resistant Staphylococcus aureus (MRSA) strains. Nanoparticles obtained from the coassembly of either 4-(1-(3-methylpentan-5-ol)oxyl)(3-phenylsulfonyl) furoxan (compound 1) or 4-methoxy(3-phenylsulfonyl) furoxan (compound 2) with Pluronic F127 exhibit 4-fold improved antimicrobial activities compared to their self-assembled counterparts without Pluronic F127. 5(6)-Carboxylfluorescein (CF) leakage experiments further reveal that both coassembled NO-releasing nanoparticles show stronger interactions with lipid bilayers than those self-assembled alone. Subsequently, their strong plasma membrane-damaging capabilities are confirmed under both high-resolution optical microscopy and scanning electron microscopy characterizations. This coassembly approach could be readily applied to other small molecule-based antimicrobials, providing new solutions and important insights to further antimicrobial recipe design.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Óxido Nítrico , Poloxâmero , Polietilenoglicóis
18.
Small Methods ; 6(8): e2200326, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35733072

RESUMO

The photocatalytic system using hydrohalic acid (HX) for hydrogen production is a promising strategy to generate clean and renewable fuels as well as value-added chemicals (such as X2 /X3 - ). However, it is still challenging to develop a visible-light active and strong-acid resistive photocatalyst. Hybrid perovskites have been recognized as a potential photocatalyst for photovoltaic HX splitting. Herein, a novel environmentally friendly mixed halide perovskite MA3 Bi2 Cl9-x Ix with a bandgap funnel structure is developed, i.e., confirmed by energy dispersive X-ray analysis and density functional theory calculations. Due to gradient neutral formation energy within iodine-doped MA3 Bi2 Cl9 , the concentration of iodide element decreases from the surface to the interior across the MA3 Bi2 Cl9-x Ix perovskite. Because of the aligned energy levels of iodide/chloride-mixed MA3 Bi2 Cl9-x Ix , a graded bandgap funnel structure is therefore formed, leading to the promotion of photoinduced charge transfer from the interior to the surface for efficient photocatalytic redox reaction. As a result, the hydrogen generation rate of the optimized MA3 Bi2 Cl9-x Ix is enhanced up to ≈341 ± 61.7 µmol h-1 with a Pt co-catalyst under visible light irradiation.

19.
Nanomaterials (Basel) ; 12(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683794

RESUMO

Mesoporous silica materials have attracted great research interest for various applications ranging from (bio)catalysis and sensing to drug delivery. It remains challenging to prepare hollow mesoporous silica nanoparticles (HMSN) with large center-radial mesopores that could provide a more efficient transport channel through the cell for guest molecules. Here, we propose a novel strategy for the preparation of HMSN with large dendritic mesopores to achieve higher enzyme loading capacity and more efficient bioreactors. The materials were prepared by combining barium sulfate nanoparticles (BaSO4 NP) as a hard template and the in situ-formed 3-aminophenol/formaldehyde resin as a porogen for directing the dendritic mesopores' formation. HMSNs with different particle sizes, shell thicknesses, and pore structures have been prepared by choosing BaSO4 NP of various sizes and adjusting the amount of tetraethyl orthosilicate added in synthesis. The obtained HMSN-1.1 possesses a high pore volume (1.07 cm3 g-1), a large average pore size (10.9 nm), and dendritic mesopores that penetrated through the shell. The advantages of HMSNs are also demonstrated for enzyme (catalase) immobilization and subsequent use of catalase-loaded HMSNs as bioreactors for catalyzing the H2O2 degradation reaction. The hollow and dendritic mesoporous shell features of HMSNs provide abundant tunnels for molecular transport and more accessible surfaces for molecular adsorption, showing great promise in developing efficient nanoreactors and drug delivery vehicles.

20.
J Colloid Interface Sci ; 619: 123-131, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35378474

RESUMO

High-performance aqueous all-organic rechargeable batteries are promising candidates for cost-effective, safe, and environment-friendly next-generation energy storage devices. Herein, two organic copolymers with nanorod-like morphology (AN-TA, and AN-PA), composed of different tertiary amines, are synthesized as the cathode material for an aqueous proton battery. The individual copolymer electrodes possess the dominated diffusion-controlled electrode kinetics resulting from the proton insertion/de-insertion along with the surface-controlled processes in 2 M HCl and 2 M H2SO4. Among the two copolymers, AN-PA exhibits the maximum specific capacity of 145 mAh g-1 at 1 A g-1 and then, even at the higher current density of 10 A g-1, it possesses the capacity as 110 mAh g-1 in 2 M HCl. The assembled aqueous proton battery comprising of AN-PA as a cathode delivers the capacity of 80 mAh g-1 at 1 A g-1 in 2 M HCl. The maximum deliverable energy density of 33.9 Wh kg-1 is achieved at the power density of 423 W kg-1. Notably, our proton battery can well operate at the sub-zero temperature of -25 °C with a cell voltage of 1.1 V. More importantly, the device retains 84 % of the initial capacity after 1000 cycles at 2 A g-1 and exhibits the retention of specific capacity of about > 93% when compared to that of room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...