Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 12(12): 220297, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36514981

RESUMO

The purpose of this review is to outline our understanding of the nature, mechanism and physiological significance of light-induced reversible reorganizations in closed Type II reaction centre (RC) complexes. In the so-called 'closed' state, purple bacterial RC (bRC) and photosystem II (PSII) RC complexes are incapable of generating additional stable charge separation. Yet, upon continued excitation they display well-discernible changes in their photophysical and photochemical parameters. Substantial stabilization of their charge-separated states has been thoroughly documented-uncovering light-induced reorganizations in closed RCs and revealing their physiological importance in gradually optimizing the operation of the photosynthetic machinery during the dark-to-light transition. A range of subtle light-induced conformational changes has indeed been detected experimentally in different laboratories using different bRC and PSII-containing preparations. In general, the presently available data strongly suggest similar structural dynamics of closed bRC and PSII RC complexes, and similar physical mechanisms, in which dielectric relaxation processes and structural memory effects of proteins are proposed to play important roles.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo
2.
Biochim Biophys Acta Bioenerg ; 1860(6): 461-468, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974094

RESUMO

In contrast to plants, algae and cyanobacteria that contain glycolipids as the major lipid components in their photosynthetic membranes, phospholipids are the dominant lipids in the membranes of anoxygenic purple phototrophic bacteria. Although the phospholipid compositions in whole cells or membranes are known for a limited number of the purple bacteria, little is known about the phospholipids associated with individual photosynthetic complexes. In this study, we investigated the phospholipid distributions in both membranes and the light-harvesting 1-reaction center (LH1-RC) complexes purified from several purple sulfur and nonsulfur bacteria. 31P NMR was used for determining the phospholipid compositions and inductively coupled plasma atomic emission spectroscopy was used for measuring the total phosphorous contents. Combining these two techniques, we could determine the numbers of specific phospholipids in the purified LH1-RC complexes. A total of approximate 20-30 phospholipids per LH1-RC were detected as the tightly bound lipids in all species. The results revealed that while cardiolipin (CL) exists as a minor component in the membranes, it became the most abundant phospholipid in the purified core complexes and the sum of CL and phosphatidylglycerol accounted for more than two thirds of the total phospholipids for most species. Preferential association of these anionic phospholipids with the LH1-RC is discussed in the context of the recent high-resolution structure of this complex from Thermochromatium (Tch.) tepidum. The detergent lauryldimethylamine N-oxide was demonstrated to selectively remove phosphatidylethanolamine from the membrane of Tch. tepidum.


Assuntos
Membrana Celular/metabolismo , Chromatiaceae/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fosfolipídeos/metabolismo , Cromatóforos Bacterianos/química , Cromatóforos Bacterianos/metabolismo , Membrana Celular/química , Chromatiaceae/química , Escherichia coli/química , Escherichia coli/metabolismo , Hyphomicrobiaceae/química , Hyphomicrobiaceae/metabolismo , Complexos de Proteínas Captadores de Luz/química , Ressonância Magnética Nuclear Biomolecular , Fosfolipídeos/química , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Rhodospirillum rubrum/química , Rhodospirillum rubrum/metabolismo , Espectrofotometria Atômica
3.
Faraday Discuss ; 198: 107-120, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28272640

RESUMO

Photosystem II (PSII) is a membrane protein complex that performs light-induced electron transfer and oxygen evolution from water. PSII consists of 19 or 20 subunits in its crystal form and binds various cofactors such as chlorophyll a, plastoquinone, carotenoid, and lipids. After initial light excitation, the charge separation produces an electron, which is transferred to a plastoquinone molecule (QA) and then to another plastoquinone (QB). PsbM is a low-molecular-weight subunit with one transmembrane helix, and is located in the monomer-monomer interface of the PSII dimer. The function of PsbM has been reported to be stabilization of the PSII dimer and maintenance of electron transfer efficiency of PSII based on previous X-ray crystal structure analysis at a resolution of 4.2 Å. In order to elucidate the structure-function relationships of PsbM in detail, we improved the quality of PSII crystals from a PsbM-deleted mutant (ΔPsbM-PSII) of Thermosynechococcus elongatus, and succeeded in improving the diffraction quality to a resolution of 2.2 Å. X-ray crystal structure analysis of ΔPsbM-PSII showed that electron densities for the PsbM subunit and neighboring carotenoid and detergent molecules were absent in the monomer-monomer interface. The overall structure of ΔPsbM-PSII was similar to wild-type PSII, but the arrangement of the hydrophobic transmembrane subunits was significantly changed by the deletion of PsbM, resulting in a slight widening of the lipid hole involving QB. The lipid hole-widening further induced structural changes of the bicarbonate ion coordinated to the non-heme Fe(ii) atom and destabilized the polypeptide chains around the QB binding site located far from the position of PsbM. The fluorescence decay measurement indicated that the electron transfer rate from QA to QB was decreased in ΔPsbM-PSII compared with wild-type PSII. The functional change in electron transfer efficiency was fully interpreted based on structural changes caused by the deletion of the PsbM subunit.


Assuntos
Mutação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/enzimologia , Cianobactérias/metabolismo , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Conformação Proteica
4.
Biochemistry (Mosc) ; 81(3): 201-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27262189

RESUMO

The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Clorofila/química , Clorofila/metabolismo , Transporte de Elétrons , Metabolismo Energético , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
5.
Photosynth Res ; 126(2-3): 237-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25899392

RESUMO

Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes.


Assuntos
Clorófitas/fisiologia , Cianobactérias/fisiologia , Hidrogênio/metabolismo , Oxigênio/metabolismo , Fotossíntese , Metabolismo Energético , Nanotecnologia , Fotobiologia
6.
Biochemistry (Mosc) ; 79(4): 324-36, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24910206

RESUMO

Cyanobacteria, algae, and plants are the manufacturers that release O2 via water oxidation during photosynthesis. Since fossil resources are running out, researchers are now actively trying to use the natural catalytic center of water oxidation found in the photosystem II (PS II) reaction center of oxygenic photosynthetic organisms to synthesize a biomimetic supercatalyst for water oxidation. Success in this area of research will transcend the current bottleneck for the development of energy-conversion schemes based on sunlight. In this review, we go over the structure and function of the water-oxidizing complex (WOC) found in Nature by focusing on the recent advances made by the international research community dedicated to achieve the goal of artificial water splitting based on the WOC of PS II.


Assuntos
Cálcio/metabolismo , Manganês/metabolismo , Nanoestruturas/química , Complexo de Proteína do Fotossistema II/metabolismo , Cálcio/química , Manganês/química , Oxirredução , Tamanho da Partícula , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Água/química , Água/metabolismo
7.
Phys Chem Chem Phys ; 16(24): 11911-23, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24632787

RESUMO

Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.


Assuntos
Cálcio/química , Compostos de Manganês/química , Óxidos/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Espectroscopia de Ressonância de Spin Eletrônica
8.
Dalton Trans ; 41(44): 13727-40, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23037319

RESUMO

Full geometry optimizations of several inorganic model clusters, CaMn(4)O(4)XYZ(H(2)O)(2) (X, Y, Z = H(2)O, OH(-) or O(2-)), by the use of the B3LYP hybrid density functional theory (DFT) have been performed to illuminate plausible molecular structures of the catalytic site for water oxidation in the S(0), S(1), S(2) and S(3) states of the Kok cycle for the oxygen-evolving complex (OEC) of photosystem II (PSII). Optimized geometries obtained by the energy gradient method have revealed the degree of symmetry breaking of the unstable three-center Mn(a)-X-Mn(d) bond in CaMn(4)O(4)XYZ(H(2)O)(2). The right-elongated (R) Mn(a)-X···Mn(d) and left-elongated (L) Mn(a)···X-Mn(d) structures appear to occupy local minima on a double-well potential for several key intermediates in these states. The effects of insertion of one extra water molecule to the vacant coordination site, Mn(d) (Mn(a)), for R (L) structures have also been examined in detail. The greater stability of the L-type structure over the R-type has been concluded for key intermediates in the S(2) and S(3) states. Implications of the present DFT structures are discussed in relation to previous DFT and related results, together with recent X-ray diffraction results for model compounds of cubane-like OEC cluster of PSII.


Assuntos
Compostos de Cálcio/química , Compostos de Manganês/química , Modelos Químicos , Óxidos/química , Complexo de Proteína do Fotossistema II/química , Oxirredução , Oxigênio/química , Complexo de Proteína do Fotossistema II/metabolismo , Água/química
9.
Plant Cell Physiol ; 42(6): 599-607, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11427679

RESUMO

Cytochrome c-550 is an extrinsic protein associated with photosystem II (PSII) in cyanobacteria and lower eukaryotic algae and plays an important role in the water-splitting reaction. The gene (psbV) for cytochrome c-550 was cloned from the thermophilic cyanobacteria Thermosynechococcus (formerly Synechococcus) elongatus and T. (formerly Synechococcus) vulcanus. In both genomes, located downstream of psbV were a novel gene (designated psbV2) for a c-type cytochrome and petJ for cytochrome c-553. The deduced product of psbV2 showed composite similarities to psbV and petJ. Phenotype of psbV-disruptant in Thermosynechococcus was practically the same as that reported in Synechocystis sp. PCC 6803. Either psbV or psbV2 gene of T. elongatus was expressed in the psbV-disruptant of Synechocystis sp. PCC 6803, which resulted in recovery of the photoautotrophic growth. However, the enhanced requirement of Ca(2+) or Cl- ions in the psbV-disruptant of Synechocystis was suppressed by expression of psbV but not by expression of psbV2. Thus, it is concluded that psbV2 can partly replace the role of psbV in PSII. The close tandem arrangement of psbV/psbV2/petJ implies that psbV2 was created by gene duplication and intergenic recombination during evolution.


Assuntos
Cianobactérias/genética , Grupo dos Citocromos c/genética , Genes Bacterianos/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cianobactérias/crescimento & desenvolvimento , Grupo dos Citocromos c/fisiologia , DNA Bacteriano , Dados de Sequência Molecular , Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos
10.
Biochemistry ; 39(48): 14739-44, 2000 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-11101288

RESUMO

A photosystem II (PSII) complex highly active in oxygen evolution was purified and crystallized from a thermophilic cyanobacterium, Synechococcus vulcanus. The PSII complex in the crystals contained the D1/D2 reaction center subunits, CP47 and CP43 (two chlorophyll-binding core antenna proteins of photosystem II), cytochrome b-559 alpha- and beta-subunits, several low molecular weight subunits, and three extrinsic proteins, that is, 33 and 12 kDa proteins and cytochrome c-550. The PSII complex also retained a high rate of oxygen evolution. The apparent molecular mass of the PSII in the crystals was determined to be 580 kDa by gel filtration chromatography, indicating that the PSII crystallized is a dimer. The crystals diffracted to a maximum resolution of 3.5 A at a cryogenic temperature using X-rays from a synchrotron radiation source, SPring-8. The crystals belonged to an orthorhombic system, and the space group was P2(1)2(1)2(1) with unit cell dimensions of a = 129.7 A, b = 226.5 A, and c = 307.8 A. Each asymmetric unit contained one PSII dimer, which gave rise to a specific volume (V(M)) of 3.6 A(3)/Da based on the calculated molecular mass of 310 kDa for a PSII monomer and an estimated solvent content of 66%. Multiple data sets of native crystals have been collected and processed to 4.0 A, indicating that our crystals are suitable for structure analysis at this resolution.


Assuntos
Cianobactérias , Complexo de Proteínas do Centro de Reação Fotossintética/química , Cristalização , Cristalografia por Raios X , Complexos de Proteínas Captadores de Luz , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II
11.
Plant Mol Biol ; 43(1): 33-41, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10949372

RESUMO

To investigate the interaction between the manganese-stabilizing protein (MSP) and cytochrome c-550 (cyt. c-550) of the photosystem II (PSII) complex in the cyanobacterium Synechocystis sp. PCC6803, three site-directed amino acid substitution mutants in MSP (MSP-D159N, MSP-R163L, MSP-D 159N/R 163L) were created by single and double amino acid substitution mutagenesis. The modified psbO genes encoding the mutants forms of MSP were used to transform a single-deletion mutant deltapsO strain lacking MSP as well as a double-deletion strain deltapsbO:deltapsbV lacking both MSP and cyt. c-550. The mutant forms of MSP were expressed in each case and all permitted autotrophic growth in strains expressing cyt. c-550. However, when the MSP mutations were introduced into a strain which lacks cyt. c-550 (deltapsbV), the two single amino acid substitution mutants (deltapsbV:MSP-D159N and deltapsbV:MSP-R 163L) failed to grow photoautotrophically. These strains exhibited coupled O2-evolving activity of 68-77% compared to the wild-type control using CO2 as an electron acceptor and maximal uncoupled O2-evolution rates of 42-57% using 2,6-dichloro-p-benzoquinone (DCBQ) as an artificial electron acceptor. Interestingly, when the two amino acid substitutions were together in the absence of cyt. c-550 (deltapsbV:MSP-D159N/R163L), the mutant grew photoautotrophically and the oxygen-evolving activities were higher than in the single mutants. This indicates that the MSP-D159N mutant suppresses the non-autotrophic phenotype of MSP-R163L (or vice versa) in the absence of cyt. c-550. The possibilities of a direct (ionic) or indirect interaction between D159 and R163 of MSP are discussed.


Assuntos
Cianobactérias/genética , Grupo dos Citocromos c/genética , Complexo de Proteína do Fotossistema II , Proteínas/genética , Sequência de Aminoácidos , Divisão Celular/genética , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Grupo dos Citocromos c/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Oxigênio/metabolismo , Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo
12.
Plant Cell Physiol ; 41(12): 1354-64, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11134421

RESUMO

Photosystem II (PSII) contains different extrinsic proteins required for oxygen evolution among different organisms. Cyanobacterial PSII contains the 33 kDa, 12 kDa proteins and cytochrome (cyt) c-550; red algal PSII contains a 20 kDa protein in addition to the three homologous cyanobacterial proteins; whereas higher plant PSII contains the 33 kDa, 23 kDa and 17 kDa proteins. In order to understand the binding and functional properties of these proteins, we performed cross-reconstitution experiments with combinations of PSII and extrinsic proteins from three different sources: higher plant (spinach), red alga (Cyanidium caldarium) and cyanobacterium (Synechococcus vulcanus). Among all of the extrinsic proteins, the 33 kDa protein is common to all of the organisms and is totally exchangeable in binding to PSII from any of the three organisms. Oxygen evolution of higher plant and red algal PSII was restored to a more or less similar level by binding of any one of the three 33 kDa proteins, whereas oxygen evolution of cyanobacterial PSII was restored to a larger extent with its own 33 kDa protein than with the 33 kDa protein from other sources. In addition to the 33 kDa protein, the red algal 20 kDa, 12 kDa proteins and cyt c-550 were able to bind to cyanobacterial and higher plant PSII, leading to a partial restoration of oxygen evolution in both organisms. The cyanobacterial 12 kDa protein and cyt c-550 partially bound to the red algal PSII, but this binding did not restore oxygen evolution. The higher plant 23 kDa and 17 kDa proteins bound to the cyanobacterial and red algal PSII only through non-specific interactions. Thus, only the red algal extrinsic proteins are partially functional in both the cyanobacterial and higher plant PSII, which implies a possible intermediate position of the red algal PSII during its evolution from cyanobacteria to higher plants.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Proteínas de Plantas/metabolismo , Rodófitas/metabolismo , Spinacia oleracea/metabolismo , Eletroforese em Gel de Poliacrilamida
13.
Biochem Biophys Res Commun ; 260(1): 245-50, 1999 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-10381374

RESUMO

The encoding extrinsic 12-kDa protein of oxygen-evolving PS II complex from a red alga, Cyanidium caldarium, was cloned and sequenced by means of PCR and a rapid amplification of cDNA ends (RACE) procedure. The gene encodes a putative polypeptide of 154 amino acids with a calculated molecular mass of 16,714 Da. The full sequence of the protein includes two characteristic transit peptides, one for transfer across the chloroplast envelope and another for targeting into the thylakoid lumen. This indicates that the protein is encoded in the nuclear genome. The mature protein consists of 93 amino acids with a calculated molecular mass of 10,513 Da. The cloned gene was successfully expressed in Escherichia coli and the resulting protein was purified, reconstituted to CaCl2-washed PS II complex together with the other extrinsic proteins of 33 and 20 kDa and cyt c-550. The recombinant 12-kDa protein bound completely with the PSII complex, which resulted in a restoration of oxygen evolution equal to the level achieved by binding of the native 12-kDa protein.


Assuntos
Proteínas de Bactérias , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II , Rodófitas/química , Sequência de Aminoácidos , Sequência de Bases , Cloreto de Cálcio/farmacologia , Clonagem Molecular , Expressão Gênica , Dados de Sequência Molecular , Oxigênio/metabolismo , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
14.
Biochemistry ; 37(9): 2787-93, 1998 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-9485429

RESUMO

Photosystem II (PSII) from a red alga, Cyanidium caldarium, contains four extrinsic proteins of 33, 20, and 12 kDa and cytochrome (cyt)c550 [Enami, I., et al., (1995) Biochim. Biophys. Acta 1232, 208-216]. The binding and functional properties of these four proteins in the red algal PSII were studied by release-reconstitution experiments. Of the four components, the 33 kDa protein binds to PSII completely by itself, and the 20 kDa protein binds to a level 61% of that in native PSII in the absence of other proteins. In contrast, cyt c550 and the 12 kDa protein cannot bind to PSII efficiently by themselves; their effective binding requires the other three extrinsic proteins. In particular, a strong interaction was observed between cyt c550 and the 12 kDa protein, and a weaker interaction was observed between cyt c550 and the 20 kDa protein. While binding of the 33 kDa protein alone or cyt c550 and the 12 kDa protein in the presence of the 33 and/or the 20 kDa protein generally enhanced oxygen evolution, binding of the 20 kDa protein did not. Oxygen evolution was strongly dependent on Ca2+ and Cl- in the absence of cyt c550 and the 12 kDa protein, suggesting that these two proteins have functions similar to those of the 23 and 17 kDa proteins in higher plant PSII. From these results, we propose that the unique 20 kDa extrinsic protein found only in the red algal PSII functions in maintaining the proper binding of cyt c550 and the 12 kDa protein but is not involved directly in oxygen evolution. The binding and functional properties of these four proteins were compared with those of the three extrinsic proteins found in cyanobacterial and higher plant PSII in an evolutionary point of view.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II , Proteínas de Plantas/metabolismo , Rodófitas/metabolismo , Grupo dos Citocromos c/metabolismo , Peso Molecular , Oxigênio/metabolismo , Ligação Proteica
15.
Biochemistry ; 37(6): 1551-8, 1998 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-9484225

RESUMO

The functions of cytochrome c-550 and a 12 kDa protein in cyanobacterial oxygen evolution were studied with directed deletion mutants delta psbV and delta psbU of Synechocystis sp. PCC 6803, and the following results were obtained. (1) In contrast to the delta psbU mutant which is capable of autotrophic growth in the absence of Ca2+ or Cl- at a reduced rate, the delta psbV mutant lacking cytochrome c-550 could not grow at all without Ca2+ or Cl-. (2) The delta psbV mutant had a significantly reduced thermoluminescence emission intensity and flash oxygen yield, whereas the delta psbU mutant showed slight decreases in thermoluminescence intensity and flash oxygen yield, indicating corresponding decreases in the concentrations of O2-evolving centers in these mutants. (3) The delta psbV and delta psbU mutants exhibited elevated peak temperature for the thermoluminescence B- and Q-bands indicative of more stable S2 states. (4) The rise time of the O2 signal during the S3-[S4]-S0 transition was increased slightly in the delta psbV mutant but not in the delta psbU mutant. (5) The oxygen evolution was inactivated in the dark rapidly in the delta psbV mutant with a half-time of 28 min, but this did not happen in the delta psbU mutant. (6) Photoactivation of the oxygen-evolving complex after removal of the manganese cluster by hydroxylamine showed a higher quantum yield in the delta psbV mutant than in the delta psbU mutant or wild type. Taken together, these results indicated that cytochrome c-550 plays a substantial role in maintaining the stability and function of the manganese cluster in algal photosystem II, whereas the 12 kDa protein plays primarily a regulatory role in maintaining normal S-state transitions. These functional features of cytochrome c-550 and the 12 kDa protein were compared with those of the 23 and 17 kDa proteins in higher plant photosystem II and of the 33 kDa protein in both algal and plant photosystem II.


Assuntos
Proteínas de Bactérias , Cianobactérias/enzimologia , Cianobactérias/genética , Grupo dos Citocromos c/genética , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II , Cálcio/metabolismo , Cloretos/metabolismo , Cianobactérias/crescimento & desenvolvimento , Grupo dos Citocromos c/metabolismo , Medições Luminescentes , Mutagênese Sítio-Dirigida , Fotólise , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
16.
J Biol Chem ; 272(28): 17821-6, 1997 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-9211937

RESUMO

The gene encoding the 12-kDa extrinsic protein of photosystem II from Synechocystis sp. PCC 6803 was cloned based on N-terminal sequence of the mature protein. This gene, named psbU, encodes a polypeptide of 131 residues, the first 36 residues of which were absent in the mature protein and thus served as a transit peptide required for its transport into the thylakoid lumen. A psbU gene deletion mutant grew photoautotrophically in normal BG11 medium at almost the same rate as that of the wild type strain. This mutant, however, grew apparently slower than the wild type did upon depletion of Ca2+ or Cl- from the growth medium. Photosystem II oxygen evolution decreased to 81% in the mutant as compared with that in the wild type, and the thermoluminescence B- and Q-bands shifted to higher temperatures accompanied by an increase in the Q-band intensity. These results indicate that the 12-kDa protein is not essential for oxygen evolution but may play a role in optimizing the ion (Ca2+ and Cl-) environment and maintaining a functional structure of the cyanobacterial oxygen-evolving complex. In addition, a double deletion mutant lacking cytochrome c-550 and the 12-kDa protein grew photoautotrophically with a phenotype identical to that of the single deletion mutant of cytochrome c-550. This supports our previous biochemical results that the 12-kDa protein cannot bind to photosystem II in the absence of cytochrome c-550 (Shen, J.-R., and Inoue, Y. (1993) Biochemistry 32, 1825-1832).


Assuntos
Proteínas de Bactérias , Cianobactérias , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Medições Luminescentes , Dados de Sequência Molecular , Peso Molecular , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rodófitas , Deleção de Sequência
17.
Biochim Biophys Acta ; 1320(1): 17-26, 1997 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-9186777

RESUMO

The structural association of the spinach 33 kDa extrinsic protein with the 43 kDa chlorophyll-carrying protein (CP43) in oxygen-evolving photosystem II (PS II) complexes was investigated by comparing the peptide mappings and N-terminal sequences of the trypsin-digested products of NaCl-washed PS II membranes, which bind the 33 kDa protein, with those of CaCl2-washed PS II membranes, which lack the 33 kDa protein. (1) Peptide from N-terminus to Arg26 of CP43, which is exposed to stromal side, was digested in both PS II membranes, independent of binding of the 33 kDa protein. (2) Peptide bond of Arg357-Phe358 located in the large extrinsic loop E of CP43, which is exposed to lumenal side, was cleaved by trypsin in CaCl2-washed PS II membranes but not in NaCl-washed PS II membranes. This indicates that the region around Arg357-Phe358 in loop E of CP43 is shielded from tryptic attack by binding of the 33 kDa protein to PS II. (3) Trypsin treatment of CaCl2-washed PS II membranes also cleaved peptide bond between Lys457 and Gly458 in C-terminal region of CP43, while no cleavage of this region was detected by trypsin treatment of NaCl-washed PS II membranes. This implies that a conformational change of the C-terminal region of CP43 which is exposed to stromal side occurred upon removal of the 33 kDa protein, which makes the C-terminal region accessible to trypsin. (4) Release of peptide from Gln60 to C-terminus of the alpha-subunit of cytochrome b-559 was detected only in trypsin treatment of CaCl2-washed PS II membranes, indicating that the C-terminal region of this subunit is shielded from tryptic attack by binding of the 33 kDa protein. (5) The PS II membranes, in which Arg357-Phe358, Lys457-Gly458 of CP43 and the C-terminal part of the cytochrome b-559 alpha-subunit had been cleaved by trypsin, was no longer able to bind the 33 kDa protein. This strongly suggests that a domain in loop E of CP43 and/or the C-terminal region of the cytochrome b-559 alpha-subunit are necessary for binding of the extrinsic 33 kDa protein to PS II.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema II , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Tripsina
18.
J Biol Chem ; 272(6): 3788-98, 1997 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-9013637

RESUMO

The extrinsic 33-kDa protein of photosystem II (PSII) was modified with various reagents, and the resulting proteins were checked for the ability to rebind to PSII and to reactivate oxygen evolution. While modification of more than eight carboxyl groups of aspartyl and glutamyl residues with glycine methyl ester did not affect the rebinding and reactivating capabilities, modification of amino groups of lysyl residues with either N-succinimidyl propionate or 2, 4,6-trinitrobenzene sulfonic acid or modification of guanidino groups of arginyl residues with 2,3-butanedione resulted in a loss of rebinding and reactivating capabilities of the 33-kDa protein. Moreover, the number of lysyl and arginyl residues susceptible to modification was significantly decreased when the protein was bound to PSII as compared with when it was free in solution, whereas the number of carboxyl groups modified was little affected. These results suggested that positive charges are important for the electrostatic interaction between the extrinsic 33-kDa protein and PSII intrinsic proteins, whereas negative charges on the protein do not contribute to such interaction. By a combination of protease digestion and mass spectroscopic analysis, the domains of lysyl residues accessible to N-succinimidyl propionate or 2,4, 6-trinitrobenzene sulfonic acid modification only when the 33-kDa protein is free in solution were determined to be Lys4, Lys20, Lys66-Lys76, Lys101, Lys105, Lys130, Lys159, Lys186, and Lys230-Lys236. These domains include those previously reported accessible to N-hydroxysuccinimidobiotin only in solution (Frankel and Bricker (1995) Biochemistry 34, 7492-7497), and may be important for the interaction of the 33-kDa protein with PSII intrinsic proteins.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II , Proteínas , Sequência de Aminoácidos , Arginina , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Lisina , Dados de Sequência Molecular , Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/metabolismo , Eletricidade Estática
19.
Biochim Biophys Acta ; 1232(3): 208-16, 1995 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-8534673

RESUMO

A Photosystem II (PS II) complex was purified from an acidophilic as well as a thermophilic red alga, Cyanidium caldarium. The purified PS II complex was essentially devoid of phycobiliproteins and other contaminating components, and showed a high oxygen-evolving activity of 2375 mumol O2/mg Chl per h using phenyl-p-benzoquinone as the electron acceptor. The expression of this high activity did not require addition of exogenous Ca2+, although EDTA reduced the activity by 40%. This effect of EDTA can be reversed not only by Ca2+ but also by Mg2+; a similar Mg2+ effect has been observed in purified cyanobacterial PS II but not in higher plant PS II. Immunoblotting analysis indicated the presence of major intrinsic polypeptides commonly found in PS II from cyanobacteria and higher plants as well as the extrinsic 33 kDa protein. Antibodies against the extrinsic 23 and 17 kDa proteins of higher plant PS II, however, did not crossreact with any polypeptides in the purified PS II, indicating the absence of these proteins in the red alga. In contrast, two other extrinsic proteins of 17 and 12 kDa were present in the red algal PS II; they were released by 1 M Tris or Urea/NaCl treatment but not by 1 M NaCl. The 17 kDa polypeptide was identified to be cytochrome c-550 from heme-staining, immunoblot analysis and N-terminal amino acid sequencing, and the 12 kDa protein was found to be homologous to the 12 kDa extrinsic protein of cyanobacterial PS II from its N-terminal sequence. These results indicate that PS II from the red alga is closely related to PS II from cyanobacteria rather than to that from higher plants, and that the replacement of PS II extrinsic cytochrome c-550 and the 12 kDa protein by the extrinsic 23 and 17 kDa proteins occurred during evolution from red algae to green algae and higher plants.


Assuntos
Grupo dos Citocromos c/análise , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Proteínas de Plantas/análise , Rodófitas/química , Sequência de Aminoácidos , Cloroplastos/química , Cianobactérias/química , Grupo dos Citocromos c/química , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Dados de Sequência Molecular , Peso Molecular , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II , Proteínas de Plantas/química , Análise de Sequência
20.
Biochemistry ; 34(39): 12661-8, 1995 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-7548017

RESUMO

Cytochrome (cyt) c-550 and the 33 kDa protein are two extrinsic components that function in maintaining oxygen evolution in cyanobacterial cells. Deletion of either of the two components has been shown to result in cyanobacterial phenotypes that are still capable of photoautotrophic growth albeit with a reduced rate. In order to study the function of cyt c-550 in cyanobacterial photosystem II (PSII) and its possible interaction with the 33 kDa extrinsic protein, we constructed a mutant lacking both cyt c-550 and the 33 kDa protein by inactivating the psbV and psbO genes simultaneously in a cyanobacterium, Synechocystis sp. PCC 6803. The resultant double-deletion mutant was unable to grow photoautotrophically and showed almost no oxygen-evolving activity (less than 10% of the wild type). This residual activity was also lost rapidly upon illumination, suggesting an increased sensitivity of the mutant cells toward photoinhibition. Thermoluminescence measurements indicated that the mutant virtually cannot undergo normal charge accumulation (S-state transitions) leading to oxygen evolution. Herbicide-binding and Western blot analyses showed that the mutant accumulates the PSII complex to an extent of only 20% of that in wild-type cells. Combined with previous results, the present results indicated that cyt c-550 supported oxygen evolution in the single-deletion mutant lacking the 33 kDa protein alone and vice versa. Thus, both cyt c-550 and the 33 kDa protein function independently in maintaining cyanobacterial oxygen-evolving activity in vivo, and both of them are required for the optimal activity.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Cianobactérias/enzimologia , Grupo dos Citocromos c/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II , Cianobactérias/genética , Mutagênese Sítio-Dirigida , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...