Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37445096

RESUMO

To improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructures, phase evolution and oxidation scales were characterized by XRD, Laser Raman, XPS, SEM and TEM. The properties were studied by cyclic oxidation as well as room- and high-temperature tensile testing. The results show that the microstructures of the alloys are of the widmanstätten structure with typical basket weave features, and the prior ß grain size and α lamellar spacing are refined with the increase of Y content. The precipitates in the alloys mainly include Y2O3 and (TiZr)6Si3 silicide phases. The Y2O3 phase has specific orientation relationships with the α-Ti phase: (002)Y2O3 // (1¯1¯20)α-Ti, [110]Y2O3 // [4¯401]α-Ti. (TiZr)6Si3 has an orientation relationship with the ß-Ti phase: (022¯1¯)(TiZr)6Si3 // (011)ß-Ti, [1¯21¯6](TiZr)6Si3 // [044¯]ß-Ti. The 0.1 wt.% Y composition alloy has the best high-temperature oxidation resistance at different temperatures. The oxidation behaviors of the alloys follow the linear-parabolic law, and the oxidation products of the alloys are composed of rutile-TiO2, anatase-TiO2, Y2O3 and Al2O3. The room-temperature and 700 °C UTS of the alloys decreases first and then increases with the increase of Y content; the 0.1 wt.% Y composition alloy has the best room-temperature mechanical properties with a UTS of 1012 MPa and elongation of 1.0%. The 700 °C UTS and elongation of the alloy with 0.1 wt.% Y is 694 MPa and 9.8%, showing an optimal comprehensive performance. The UTS and elongation of the alloys at 750 °C increase first and then decrease with the increase of Y content. The optimal UTS and elongation of the alloy is 556 MPa and 10.1% obtained in 0.2 wt.% Y composition alloy. The cleavage and dimples fractures are the primary fracture mode for the room- and high-temperature tensile fracture, respectively.

2.
Toxics ; 11(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112567

RESUMO

Bisphenol A (BPA) is a major component of polycarbonate plastics and epoxy resins. While many studies have investigated the effect BPA exposure has upon changes in gut microbial communities, the influence of gut microbiota on an organism's ability to metabolize BPA remains comparatively unexplored. To remedy this, in this study, Sprague Dawley rats were intermittently (i.e., at a 7-day interval) or continuously dosed with 500 µg BPA/kg bw/day for 28 days, via oral gavage. In the rats which underwent the 7-day interval BPA exposure, neither their metabolism of BPA nor their gut microbiota structure changed greatly with dosing time. In contrast, following continuous BPA exposure, the relative level of Firmicutes and Proteobacteria in the rats' guts significantly increased, and the alpha diversity of the rats' gut bacteria was greatly reduced. Meanwhile, the mean proportion of BPA sulfate to total BPA in rat blood was gradually decreased from 30 (on day 1) to 7.4% (by day 28). After 28 days of continuous exposure, the mean proportion of BPA glucuronide to total BPA in the rats' urine elevated from 70 to 81%, and in the rats' feces the mean proportion of BPA gradually decreased from 83 to 65%. Under continuous BPA exposure, the abundances of 27, 25, and 24 gut microbial genera were significantly correlated with the proportion of BPA or its metabolites in the rats' blood, urine, and feces, respectively. Overall, this study principally aimed to demonstrate that continuous BPA exposure disrupted the rats' gut microbiota communities, which in turn altered the rats' metabolism of BPA. These findings contribute to the better understanding of the metabolism of BPA in humans.

3.
Appl Bionics Biomech ; 2022: 8666724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245936

RESUMO

Objective: This study aimed to determine if variations in the expression profiles of CA 19-9 and carcinoembryonic antigen (CEA) within the reference range could serve as possible biomarkers for postoperative CRC recurrence. Method: This retrospective cohort investigation enrolled 2,596 cases of CRC that received curative surgery. Serum CEA/CA 19-9 were measured through chemiluminescence immunoassay (CLIA). Results: During follow-up (median follow-up = 5.2 years), in total, 837 patients experienced recurrence. The fully adjusted hazard ratios (HRs) were significantly higher, ≥1 standard deviation (±SD), in patients with upregulated CEA/CA 19-9 levels (HRCEA = 7.06; HRCA 19 - 9 = 3.98) than in those with downregulated CEA/CA 19-9 levels. The likelihood of recurrence remained consistently greater in cases of elevated CEA/CA 19-9 levels during sensitivity analyses. Conclusions: The findings of this analysis showed that variations in CEA/CA 19-9 expression profiles within the reference range impact CRC recurrence.

4.
Materials (Basel) ; 14(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34683592

RESUMO

The construction of superhydrophobic surfaces necessitates the rational design of topographic surface structure and the reduction of surface energy. To date, the reported strategies are usually complex with multi-steps and costly. Thus, the simultaneous achievement of the two indispensable factors is highly desired, yet rather challenging. Herein, we develop a novel structure engineering strategy of realizing the fabrication of a functionally integrated device (FID) with a superhydrophobic surface via a one-step spraying method. Specifically, silica nanoparticles are used to control the surface roughness of the device, while polydimethylsiloxane is employed as the hydrophobic coating. Benefitting from the adopted superhydrophobicity, the as-fabricated FID exhibits a continuous, excellent oil-water separating performance (e.g., 92.5% separating efficiency) when coupled with a peristaltic pump. Notably, a smart design of incorporating a gas switch is adopted in this device, thereby effectively preventing water from entering the FID, realizing thorough oil collection, and avoiding secondary pollution. This work opens up an avenue for the design and development of the FID, accessible for rapid preparation and large-scale practical application.

5.
Cytotherapy ; 22(4): 193-203, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32173261

RESUMO

Spinal cord injury (SCI) is a common disease and a major cause of paralysis, carrying much burden around the world. Despite the progress made with growth factors therapy, the response rate of acute SCI treatment still remains unsatisfactory, due largely to complex and severe inflammatory reactions. Herein, we prepare a MFG-E8-loaded copolymer system-based anti-inflammation therapy for SCI treatment. It is shown that the MFG-E8-loaded copolymer system can decrease pro-inflammatory cytokine expression and neuron death. In a rat model of crush-caused SCI, the copolymer system shows significant therapeutic efficacy by ameliorating inflammation, decreasing fibrotic scar, promoting myelin regeneration and suppressing overall SCI severity.


Assuntos
Antígenos de Superfície/administração & dosagem , Morte Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Proteínas do Leite/administração & dosagem , Bainha de Mielina/metabolismo , NF-kappa B/metabolismo , Polietilenoglicóis/administração & dosagem , Poliglactina 910/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hidrogéis/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Injeções , Regeneração Nervosa/efeitos dos fármacos , Células PC12 , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
6.
Int J Biol Macromol ; 127: 594-605, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710582

RESUMO

In this study, we prepared pH- and magnetism-responsive Fe3O4@C/carboxymethyl cellulose (CMC)/chitosan composite microbeads for controlled release of diclofenac sodium (DS) to (i) prevent complete drug release in gastric area, (ii) maintain blood drug concentration in a specific part of the body, (iii) reduce drug administration time and systemic drug toxicity, and (iv) improve drug efficacy. Through one-step solvent thermal treatment, a polyethylene glycol layer was wrapped into Fe3O4 nanoparticles. Then, Fe3O4@C nanoparticles were incorporated into CMC matrix and coated with chitosan layer via a self-assembly technique to form core-shell polyelectrolyte complexes (PECs). The composite beads were characterized by SEM, TEM, FT-IR spectrometry, and TGA. In addition, the effect of different concentrations of Fe3O4@C, CMC, aluminum chloride (AlCl3), and chitosan on the swelling process of composite beads, DS loading, and controlled release behavior was systematically studied. DS encapsulation efficiency in Fe3O4@C/CMC/chitosan beads reached 70.8 ±â€¯0.65% at concentrations of 0.1% Fe3O4@C, 3% CMC, 3% AlCl3, and 1% chitosan. The beads showed a higher swelling index in phosphate buffer at pH 7.4 and 6.8 than at pH 1.2. The composite beads revealed excellent pH-sensitive in vitro drug release profiles and prevented burst release in the gastrointestinal tract.


Assuntos
Carboximetilcelulose Sódica/química , Quitosana/química , Diclofenaco , Portadores de Fármacos , Nanopartículas de Magnetita/química , Microesferas , Nanocompostos/química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Diclofenaco/química , Diclofenaco/farmacocinética , Diclofenaco/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia
7.
Int J Biol Macromol ; 125: 808-819, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30562520

RESUMO

In this work, amino-functionalized Santa Barbara Amorphous-15/calcium alginate (ASBA-15@CA) microspheres were fabricated and characterized by FTIR, SEM, XRD, TGA, and XPS analyses. The Pb(II) adsorption properties of the ASBA-15@CA microspheres were studied in terms of the effects of the adsorption time, adsorbent dose, solution pH, temperature, and initial concentration of Pb(II) on the adsorption capacity. At pH 6 and 298 K, the adsorption reached equilibrium after 100 min and the sample exhibited a good adsorption effect, affording a maximum adsorption capacity of 1029.58 mg/g and a removal rate as high as 98.99%. The adsorption process conformed to the Langmuir model (R2 = 0.9937) and followed the pseudo-second-order kinetics model (R2 = 0.9995). Regeneration experiments showed that the removal rate of the sample reached 75% even after 6 cycles. Overall, this study provides new insights into the development of novel, highly efficient, and repeatable degradation materials for the removal of Pb(II).


Assuntos
Alginatos/química , Chumbo/química , Dióxido de Silício/química , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Microesferas , Temperatura , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA