Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447513

RESUMO

Ammonia-oxidation process directly contribute to soil nitrous oxide (N2O) emissions in agricultural soils. However, taxonomy of the key nitrifiers (within ammonia oxidising bacteria (AOB), archaea (AOA) and complete ammonia oxidisers (comammox Nitrospira)) responsible for substantial N2O emissions in agricultural soils is unknown, as is their regulation by soil biotic and abiotic factors. In this study, cumulative N2O emissions, nitrification rates, abundance and community structure of nitrifiers were investigated in 16 agricultural soils from major crop production regions of China using microcosm experiments with amended nitrogen (N) supplemented or not with a nitrification inhibitor (nitrapyrin). Key nitrifier groups involved in N2O emissions were identified by comparative analyses of the different treatments, combining sequencing and random forest analyses. Soil cumulative N2O emissions significantly increased with soil pH in all agricultural soils. However, they decreased with soil organic carbon (SOC) in alkaline soils. Nitrapyrin significantly inhibited soil cumulative N2O emissions and AOB growth, with a significant inhibition of the AOB Nitrosospira cluster 3a.2 (D11) abundance. One Nitrosospira multiformis-like OTU phylotype (OTU34), which was classified within the AOB Nitrosospira cluster 3a.2 (D11), had the greatest importance on cumulative N2O emissions and its growth significantly depended on soil pH and SOC contents, with higher growth at high pH and low SOC conditions. Collectively, our results demonstrate that alkaline soils with low SOC contents have high N2O emissions, which were mainly driven by AOB Nitrosospira cluster 3a.2 (D11). Nitrapyrin can efficiently reduce nitrification-related N2O emissions by inhibiting the activity of AOB Nitrosospira cluster 3a.2 (D11). This study advances our understanding of key nitrifiers responsible for high N2O emissions in agricultural soils and their controlling factors, and provides vital knowledge for N2O emission mitigation in agricultural ecosystems.


Assuntos
Ecossistema , Solo , Solo/química , Amônia/química , Carbono , Oxirredução , Archaea , Nitrificação , Microbiologia do Solo
2.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1547-1554, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37694417

RESUMO

Root-associated fungi play a vital role in maintaining nutrient absorption and health of host plants. To compare the responses of root-associated fungal community structures to nitrogen (N) and/or phosphorus (P) additions across differential mycorrhizal types, we collected roots of nine plant species belonging to three mycorrhizal types (arbuscular mycorrhiza, ectomycorrhiza, and ericoid mycorrhiza) under control and N and/or P addition treatments from a subtropical forest, and detected the diversity and community composition of fungi inhabiting roots through the high-throughput sequencing technique. The results showed that root-associated fungal communities of all nine plant species were mainly composed of Basidiomycota and Ascomycota. The relative abundance of Ascomycota and Basidiomycota was significantly lower and higher under the P addition than that under control, respectively. The relative abundance of Ascomycota of ericoid mycorrhizal trees was significantly higher than those of arbuscular mycorrhizal and ectomycorrhizal trees, while the relative abundance of Basidiomycota was significantly lower than the other two mycorrhizal types. Compared with the control, P addition significantly reduced the α-diversity and changed community composition of root-associated fungi across different mycorrhizal plant types, while no effect of N addition or mycorrhizal type was observed. Compared with the control and N addition treatments, NP addition caused root-associated fungal communities of all plants becoming integrally divergent. In addition, the fungal communities of ectomycorrhizal mycorrhizal trees became apparently convergent in comparison with those of arbuscular and ericoid mycorrhizal trees under the NP addition. Collectively, our results highlighted that P was a critical factor influencing community structures of tree root-associated fungi in subtropical forest soils. This study would enhance our understanding of the responses and maintenance mechanisms of plant root-associated fungal diversity under global environmental changes in the subtropical region.


Assuntos
Micobioma , Micorrizas , Nitrogênio , Florestas , Árvores , Fósforo
3.
Nat Commun ; 14(1): 5629, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699913

RESUMO

River run-off has long been regarded as the largest source of organic-rich suspended particulate matter (SPM) in the Great Barrier Reef (GBR), contributing to high turbidity, pollutant exposure and increasing vulnerability of coral reef to climate change. However, the terrestrial versus marine origin of the SPM in the GBR is uncertain. Here we provide multiple lines of evidence (13C NMR, isotopic and genetic fingerprints) to unravel that a considerable proportion of the terrestrially-derived SPM is degraded in the riverine and estuarine mixing zones before it is transported further offshore. The fingerprints of SPM in the marine environment were completely different from those of terrestrial origin but more consistent with that formed by marine phytoplankton. This result indicates that the SPM in the GBR may not have terrestrial origin but produced locally in the marine environment, which has significant implications on developing better-targeted management practices for improving water quality in the GBR.


Assuntos
Mudança Climática , Poluentes Ambientais , Transporte Biológico , Recifes de Corais , Material Particulado
4.
Ying Yong Sheng Tai Xue Bao ; 34(3): 639-646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087646

RESUMO

We conducted a nitrogen (N) and phosphorus (P) addition experiment in Qianjiangyuan National Park in 2015, to investigate the response of ammonia-oxidizing microorganisms and denitrifying microorganisms. There were four treatments, including N addition (N), P addition (P), NP, and control (CK). Soil samples were collected in April (wet season) and November (dry season) of 2021. The abundance of amoA gene of ammonia-oxidizing microorganisms (i.e., ammonia-oxidizing archaea, AOA; ammonia-oxidizing bacteria, AOB; comammox) and denitrifying microbial genes (i.e., nirS, nirK, and nosZ) were determined using quantitative PCR approach. The results showed that soil pH was significantly decreased by long-term N addition, while soil ammonium and nitrate contents were significantly increased. Soil available P and total P contents were significantly increased with the long-term P addition. The addition of N (N and NP treatments) significantly increased the abundance of AOB-amoA gene in both seasons, and reached the highest in the N treatment around 8.30×107 copies·g-1 dry soil. The abundance of AOA-amoA gene was significantly higher in the NP treatment than that in CK, with the highest value around 1.17×109 copies·g-1 dry soil. There was no significant difference in N-related gene abundances between two seasons except for the abundance of comammox-amoA. Nitrogen addition exerted significant effect on the abundance of AOB-amoA, nirK and nosZ genes, especially in wet season. Phosphorus addition exerted significant effect on the abundance of AOA-amoA and AOB-amoA genes in both seasons, but did not affect denitrifying gene abundances. Soil pH, ammonium, nitrate, available P, and soil water contents were the main factors affecting the abundance of soil N-related functional genes. In summary, the response of soil ammonia-oxidizing microorganisms and denitrifying microorganisms was more sensitive to N addition than to P addition. These findings shed new light for evaluating soil nutrient availability as well as their response mechanism to global change in subtropical forests.


Assuntos
Compostos de Amônio , Bactérias , Bactérias/genética , Amônia , Fósforo , Nitratos , Oxirredução , Microbiologia do Solo , Archaea/genética , Florestas , Solo/química
5.
Sci Total Environ ; 863: 160986, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36528948

RESUMO

Soil-borne fungal pathogens pose a major threat to global agricultural production and food security. Pathogen-suppressive bacteria and plant beneficial protists are important components of soil microbiomes and essential to plant health and performance, but it remains largely unknown regarding how agricultural management practices influence the relative importance of protists and bacteria in plant disease suppression. Here, we characterized soil microbiomes (including fungi, protists, and bacteria) in bulk and sorghum rhizosphere soils with various long-term inorganic and organic fertilization regimes, and linked the changes in fungal plant pathogens with the protistan and bacterial communities. We found that the relative abundances of fungal pathogens were significantly decreased by organic fertilization regimes, and there was a significant difference in the community composition of fungal pathogens between inorganic and organic fertilization regimes. Organic fertilization significantly enhanced predatory protists but reduced the proportions of protistan phototrophs. Co-occurrence network analysis revealed more intensive connections between fungal plant pathogens with protists, especially predatory protists, than with bacterial taxa, which was further supported by stronger associations between the community structure of fungal pathogens and predatory protists. We identified more protist consumer taxa than bacterial taxa as predictors of fungal plant pathogens, and structural equation modelling revealed a more important impact of protist consumers than bacteria on fungal pathogens. Altogether, we provide new evidence that the disease inhibitory effects of long-term organic fertilization regimes could be best explained by the potential predation pressure of protists. Our findings advance the mechanistic understanding of the role of predator-prey interactions in controlling fungal diseases, and have implications for novel biocontrol strategies to mitigate the consequences of fungal infections for plant performance.


Assuntos
Comportamento Predatório , Solo , Animais , Solo/química , Microbiologia do Solo , Eucariotos , Bactérias , Fertilização
6.
Sci Total Environ ; 858(Pt 2): 159961, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343813

RESUMO

The objectives of this study were to investigate the abundance and community composition of comammox Nitrospira under: (i) pasture-based dairy farms from different regions, and (ii) different land uses from the same region and soil type. The results clearly showed that comammox Nitrospira were most abundant (3.0 × 106 copies) under the west coast dairy farm conditions, where they were also significantly more abundant than canonical ammonia oxidisers. This was also true in the Canterbury dairy farm. The six land uses investigated were pine monoculture, a long term no input ecological trial, sheep + beef and Dairy, both irrigated and non-irrigated. It was concluded that comammox Nitrospira was most abundant under the irrigated dairy farm (2.7 × 106 copies). Contrary to the current industry opinion, the relatively high abundance of comammox Nitrospira under fertile irrigated dairy land suggests that comammox Nitrospira found in terrestrial ecosystems may be copiotrophic. it was also determined that comammox Nitrospira was more abundant under irrigated land use than their non-irrigated counterparts, suggesting that soil moisture is a key environmental parameter influencing comammox abundance. Comammox abundance was also positively correlated with annual rainfall, further supporting this theory. Phylogenetic analysis of the comammox Nitrospira detected determined that 17 % of the comammox community belonged to a newly distinguished subclade, clade B.2. The remaining 83 % belonged to clade B.1. No sequences from clade A were found.


Assuntos
Archaea , Solo , Ovinos , Animais , Nitrificação , Filogenia , Ecossistema , Nova Zelândia , Oxirredução , Bactérias , Amônia , Microbiologia do Solo
7.
Front Microbiol ; 13: 1048735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578577

RESUMO

The recent discovery of comammox Nitrospira, a complete ammonia oxidizer, capable of completing the nitrification on their own has presented tremendous challenges to our understanding of the nitrification process. There are two divergent clades of comammox Nitrospira, Clade A and B. However, their population abundance, community structure and role in ammonia and nitrite oxidation are poorly understood. We conducted a 94-day microcosm study using a grazed dairy pasture soil amended with urea fertilizers, synthetic cow urine, and the nitrification inhibitor, dicyandiamide (DCD), to investigate the growth and community structure of comammox Nitrospira spp. We discovered that comammox Nitrospira Clade B was two orders of magnitude more abundant than Clade A in this fertile dairy pasture soil and the most abundant subcluster was a distinctive phylogenetic uncultured subcluster Clade B2. We found that comammox Nitrospira Clade B might not play a major role in nitrite oxidation compared to the role of canonical Nitrospira nitrite-oxidizers, however, comammox Nitrospira Clade B is active in nitrification and the growth of comammox Nitrospira Clade B was inhibited by a high ammonium concentration (700 kg synthetic urine-N ha-1) and the nitrification inhibitor DCD. We concluded that comammox Nitrospira Clade B: (1) was the most abundant comammox in the dairy pasture soil; (2) had a low tolerance to ammonium and can be inhibited by DCD; and (3) was not the dominant nitrite-oxidizer in the soil. This is the first study discovering a new subcluster of comammox Nitrospira Clade B2 from an agricultural soil.

8.
mSystems ; 7(4): e0052922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35938729

RESUMO

Livestock wastes contain high levels of antibiotic resistance genes (ARGs) and a variety of human-related pathogens. Bioconversion of livestock manure using larvae of the beetle Protaetia brevitarsis is an effective technique for waste reduction and value creation; however, the fate of manure ARGs during gut passage and interaction with the gut microbiome of P. brevitarsis remains unclear. To investigate this, we fed P. brevitarsis with dry chicken manure for 6 days and measured bacterial community dynamics and ARG abundance and diversity along the P. brevitarsis gut tract using high-throughput quantitative PCR and metagenomics approaches. The diversity of ARGs was significantly lower in larval midgut, hindgut, and frass than in raw chicken manure, and around 80% of pathogenicity-related genes (PRGs) exhibited reduced abundance. Network analysis demonstrated that Bacteroidetes and Firmicutes were the key bacterial phyla associated with ARG reduction. Metagenomic analysis further indicated that ARGs, mobile genetic elements (MGEs), and PRGs were simultaneously attenuated in the hindgut, implicating a decreased likelihood for horizontal gene transfer (HGT) of ARGs among bacteria and pathogens during manure bioconversion. Our findings demonstrated that the attenuation of ARGs is strongly associated with the variation of the gut microbiome of P. brevitarsis, providing insights into mechanisms of risk mitigation of ARG dissemination during manure bioconversion. IMPORTANCE Saprophagous fauna like the oriental edible beetle (P. brevitarsis) plays a fundamental role in converting organic wastes into biofertilizer. Accumulating evidence has shown that soil fauna can reduce the abundance of ARGs, although the underlying mechanism of ARG reduction is still unclear. In our previous research, we found a large reduction of ARGs in vegetable roots and leaves from frass compared with raw manure, providing a promising biofertilizer for soil-vegetable systems. Therefore, in this study, temporal dynamic changes in the microbiomes of the donor (chicken manure) and host (P. brevitarsis) were investigated, and we found a close association between the gut microbiome and the alteration of ARGs. These results shed new light on how the insect gut microbiome can mitigate manure-borne ARGs and provide insights into the bioconversion process via a typical member of the saprophagous fauna, P. brevitarsis.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Microbioma Gastrointestinal/genética , Solo , Esterco/análise , Antibacterianos/análise , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Larva/genética
9.
J Hazard Mater ; 430: 128442, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35158246

RESUMO

Understanding the future distribution of antibiotic resistance in natural soil ecosystems is important to forecast their impacts on ecosystem and human health under projected climate change scenarios. Therefore, it is critical and timely to decipher the links between climate warming and antibiotic resistance, two of Earth's most imminent problems. Here, we explored the role of five-year simulated climate warming (+ 4 °C) on the diversity and proportions of soil antibiotic resistance genes (ARGs) across three seasons in both plantation and natural forest ecosystems. We found that the positive effects of warming on the number and proportions of ARGs were dependent on the sampling seasons (summer, autumn and winter), and seasonality was a key factor driving the patterns of ARG compositions in forest soils. Fifteen ARGs, conferring resistance to common antibiotics including aminoglycoside, beta-lactam, macrolide-lincosamide-streptogramin B, multidrug, sulfonamide, and tetracycline, were significantly enriched in the warming treatment. We showed that changes in soil properties and community compositions of bacteria, fungi and protists can explain the changes in soil ARGs under climate warming. Taken together, these findings advance our understanding of environmental ARGs under the context of future climate change and suggest that elevated temperature may promote the abundance of specific soil ARGs, with important implications for ecosystem and human health.


Assuntos
Ecossistema , Solo , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Microbiologia do Solo
10.
Sci Total Environ ; 807(Pt 1): 150781, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624280

RESUMO

Scarab larvae (Protaetia brevitarsis) could transform large quantities of agricultural waste into compost, providing a promising bio-fertilizer for soil management. There is an urgent need to assess the risk of antibiotic resistance genes (ARGs) in soil-vegetable system with application of compost derived from P. brevitarsis larvae. We conducted a pot experiment to compare the changes of ARGs in the soil and lettuce by adding four types of manure, livestock manure (chicken and swine manure) and the corresponding larval frass. Significantly low numbers of ARGs and mobile genetic elements (MGEs) were detected in both larval frass compared with the corresponding livestock manure. Pot experiment showed that the detected numbers of ARGs and MGEs in bulk soil, rhizosphere soil, and root endophytes were significantly lower in the frass-amended treatments than the raw manure-amended treatments. Furthermore, the relative abundance of ARGs and MGEs with application of chicken-frass was significant lower in rhizosphere soil and leaf endophyte. Using non-metric multidimensional scaling analysis, the patterns of soil ARGs and MGEs with chicken-frass application were more close to those from the bulk soil in the control. Structural equation models indicated that livestock manure addition was the main driver shaping soil ARGs with raw manure application, while MGEs were the key drivers in frass-amended treatments. These findings demonstrated that application of livestock manure vermicomposting via scarab larvae (P. brevitarsis) may be at low risk in spreading manure-borne ARGs through soil-plant system, providing an alternative technique for reducing ARGs in organic waste.


Assuntos
Esterco , Solo , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Gado , Microbiologia do Solo , Suínos , Verduras
11.
Sci Total Environ ; 805: 150426, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818756

RESUMO

Chemical fumigants and organic fertilizer are commonly used in facility agriculture to control soil-borne diseases and promote soil health. However, there is a lack of evidence for the effect of non-antibiotic fumigants on the distribution of antibiotic resistance genes (ARGs) in plant rhizosphere soils. Here, the response of a wide spectrum of ARGs and mobile genetic elements (MGEs) to dazomet fumigation practice in the rhizosphere soil of watermelon was investigated along its branching, flowering and fruiting growth stages in plastic shelters using high-throughput quantitative PCR approach. Our results indicated that soil fumigation combined with organic fertilizer application significantly increased the relative abundance of ARGs and MGEs in the rhizosphere soil of watermelon plant. The positive correlations between the relative abundance of ARGs and MGEs suggested that soil fumigation might increase the horizontal gene transfer (HGT) potential of ARGs. This result was further confirmed by the enhanced associations between ARG and MGE subtypes in the networks of fumigation treatments. Moreover, bipartite associations between ARGs/MGEs and microbial communities (bacteria and fungi) revealed a higher percentage of linkage between MGEs and microbial taxa in the fumigated soils. Structural equation model analysis further suggested that the increases in antibiotic resistance after fumigation and organic fertilizer application were mainly driven by MGEs and fungal community. Together, our results provide vital evidence that dazomet fumigation process combined with organic fertilizer in plastic shelters has the great potential to promote ARGs' dissemination in the rhizosphere, and raise cautions of the acquired resistance by soil-borne fungal pathogen and the potential spreading of ARGs along soil-plant continuum.


Assuntos
Citrullus , Solo , Resistência Microbiana a Medicamentos , Fertilizantes , Fumigação , Genes Bacterianos , Rizosfera , Microbiologia do Solo
12.
Front Microbiol ; 13: 1075234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762093

RESUMO

The organic material amendment has been proven to change the soil antibiotic resistance genes (ARGs) profile, which may threaten human health through the food chain, but the effects and mechanisms of different organic materials on ARGs in paddy soils are less explored. In this study, a field experiment was set up with the treatments of conventional chemical fertilization (NPK) and common organic material amendment [rice straw (RS), swine manure (SM), and biochar (BC)] to explore the effects and mechanisms. In total, 84 unique ARGs were found across the soil samples with different organic material amendments, and they conferred resistance to the major antibiotic classes. Compared with NPK, SM significantly increased the detected number and relative abundance of ARGs. A higher detected number of ARGs than NPK was observed in BC, whereas BC had a lower relative abundance of ARGs than NPK. Compared with NPK, a detected number decrease was observed in RS, although abundance showed no significant differences. Compared with other treatments, a higher detected number and relative abundance of mobile genetic elements (MGEs) were observed in BC, indicating a higher potential for horizontal gene transfer. There were significantly positive relationships between the relative abundances of total ARGs and MGEs and the bacterial abundance. The network analysis suggested the important role of MGEs and bacterial communities in shaping the ARGs profile. Mantel test and redundancy analysis (RDA) suggested that soil carbon, nitrogen, and C/N were the major chemical drivers of the ARGs profile. The risk of ARGs spreading to the food chain should be considered when applying SM and biochar, which shifted the ARGs and MGEs profiles, respectively. Pre-treatment measures need to be studied to reduce the dissemination of ARGs in paddy fields.

13.
Front Microbiol ; 12: 678290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305842

RESUMO

Fungi regulate nutrient cycling, decomposition, symbiosis, and pathogenicity in cropland soils. However, the relative importance of generalist and specialist taxa in structuring soil fungal community remains largely unresolved. We hypothesized that generalist fungi, which are adaptable to various environmental conditions, could potentially dominate the community and become the basis for fungal coexisting networks in cropping systems. In this study, we identified the generalist and habitat specialist fungi in cropland soils across a 2,200 kms environmental gradient, including three bioclimatic regions (subtropical, warm temperate, and temperate). A few fungal taxa in our database were classified as generalist taxa (~1%). These generalists accounted for >35% of the relative abundance of all fungal populations, and most of them are Ascomycota and potentially pathotrophic. Compared to the specialist taxa (5-17% of all phylotypes in three regions), generalists had a higher degree of connectivity and were often identified as hub within the network. Structural equation modeling provided further evidence that after accounting for spatial and climatic/edaphic factors, generalists had larger contributions to the fungal coexistence pattern than habitat specialists. Taken together, our study provided evidence that generalist taxa are crucial components for fungal community structure. The knowledge of generalists can provide important implication for understanding the ecological preference of fungal groups in cropland systems.

14.
Ying Yong Sheng Tai Xue Bao ; 32(7): 2615-2622, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34313080

RESUMO

Quantitative stable isotope probing (qSIP) is a powerful tool, which links microbial taxon with functional metabolism in ecosystems and quantitatively determines the metabolic activity or growth rate of individual microbial taxa exposed to isotope tracers in the environment. qSIP technique employs quantitative PCR, high-throughput sequencing and stable isotope probing (SIP) techniques. The procedure involves adding labeled substrates to environmental samples for cultivation, separating labeled heavy fraction from unlabeled light fraction via isopycnic ultracentrifugation, making absolute quantification and sequencing analysis for microbial populations in all fractions, and then quantifying the isotope abundance of DNA involved in uptake and transformation based on the DNA density curve of unlabeled treatment and GC content. Here, we reviewed the rationale, data analysis and application of qSIP in microbial ecology, and discussed the existing problems and prospects of qSIP.


Assuntos
Microbiota , Isótopos de Carbono , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Marcação por Isótopo
15.
Environ Microbiol ; 23(4): 1907-1924, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996254

RESUMO

Plants harbour highly diverse mycobiomes which sustain essential functions for host health and productivity. However, ecological processes that govern the plant-mycobiome assembly, interactions and their impact on ecosystem functions remain poorly known. Here we characterized the ecological role and community assembly of both abundant and rare fungal taxa along the soil-plant continuums (rhizosphere, phyllosphere and endosphere) in the maize-wheat/barley rotation system under different fertilization practices at two contrasting sites. Our results indicate that mycobiome assembly is shaped predominantly by compartment niche and host species rather than by environmental factors. Moreover, crop-associated fungal communities are dominated by few abundant taxa mainly belonging to Sordariomycetes and Dothideomycetes, while the majority of diversity within mycobiomes are represented by rare taxa. For plant compartments, the abundant sub-community is mainly determined by stochastic processes. In contrast, the rare sub-community is more sensitive to host selection and mainly governed by deterministic processes. Furthermore, our results demonstrate that rare taxa play an important role in fungal co-occurrence network and ecosystem functioning like crop yield and soil enzyme activities. These results significantly advance our understanding of crop mycobiome assembly and highlight the key role of rare taxa in sustaining the stability of crop mycobiomes and ecosystem functions.


Assuntos
Produtos Agrícolas/microbiologia , Micobioma , Ecossistema , Fungos/genética , Rizosfera , Microbiologia do Solo
16.
New Phytol ; 229(2): 1091-1104, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32852792

RESUMO

Plant microbiomes are essential to host health and productivity but the ecological processes that govern crop microbiome assembly are not fully known. Here we examined bacterial communities across 684 samples from soils (rhizosphere and bulk soil) and multiple compartment niches (rhizoplane, root endosphere, phylloplane, and leaf endosphere) in maize (Zea mays)-wheat (Triticum aestivum)/barley (Hordeum vulgare) rotation system under different fertilization practices at two contrasting sites. Our results demonstrate that microbiome assembly along the soil-plant continuum is shaped predominantly by compartment niche and host species rather than by site or fertilization practice. From soils to epiphytes to endophytes, host selection pressure sequentially increased and bacterial diversity and network complexity consequently reduced, with the strongest host effect in leaf endosphere. Source tracking indicates that crop microbiome is mainly derived from soils and gradually enriched and filtered at different plant compartment niches. Moreover, crop microbiomes were dominated by a few dominant taxa (c. 0.5% of bacterial phylotypes), with bacilli identified as the important biomarker taxa for wheat and barley and Methylobacteriaceae for maize. Our work provides comprehensive empirical evidence on host selection, potential sources and enrichment processes for crop microbiome assembly, and has important implications for future crop management and manipulation of crop microbiome for sustainable agriculture.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias , Raízes de Plantas , Rizosfera
17.
Environ Sci Technol ; 54(20): 13137-13146, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32954728

RESUMO

Silica nanoparticles (SiO2-NPs) are promising in nanoenabled agriculture due to their large surface area and biocompatible properties. Understanding the fundamental interaction between SiO2-NPs and plants is important for their sustainable use. Here, 3 week-old pakchoi (Brassica chinensis L.) plants were sprayed with SiO2-NPs every 3 days for 15 days (5 mg of SiO2-NPs per plant), after which the phenotypes, biochemical properties, and molecular responses of the plants were evaluated. The changes in rhizosphere metabolites were characterized by gas chromatography-mass spectrometry (GC-MS)-based metabolomics, and the response of soil microorganisms to the SiO2-NPs were characterized by high-throughput bacterial 16S rRNA and fungal internal transcribed spacer (ITS) gene sequencing. The results showed that the SiO2-NP spray had no adverse effects on photosynthesis of pakchoi plants nor on their biomass. However, the rhizosphere metabolite profile was remarkably altered upon foliar exposure to SiO2-NPs. Significant increases in the relative abundance of several metabolites, including sugars and sugar alcohols (1.3-9.3-fold), fatty acids (1.5-18.0-fold), and small organic acids (1.5-66.9-fold), and significant decreases in the amino acid levels (60-100%) indicated the altered carbon and nitrogen pool in the rhizosphere. Although the community structure was unchanged, several bacterial (Rhodobacteraceae and Paenibacillus) and fungal (Chaetomium) genera in the rhizosphere involved in carbon and nitrogen cycles were increased. Our results provide novel insights into the environmental effects of SiO2-NPs and point out that foliar application of NPs can alter the soil metabolite profile.


Assuntos
Brassica , Microbiota , Nanopartículas , RNA Ribossômico 16S/genética , Rizosfera , Dióxido de Silício , Solo , Microbiologia do Solo
18.
Sci Total Environ ; 712: 136418, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31927444

RESUMO

Soil is a vital reservoir of antibiotic resistance genes (ARGs), but we still know little about their distribution in cropland soils and the main driving forces. Here we performed an investigation for ARGs patterns in 105 cropland soils (planted with maize, peanut or soybean) along a 2, 200 km transect in China using high-throughput quantitative PCR approaches. Totally, 204 ARGs were detected, with a higher diversity found in central China than that in northeast and south China. The most abundant (top 50%) and highly shared (present in >50% samples) ARGs regarded as core resistome were dominated by multidrug resistance genes such as oprJ, acrA-05 and acrA-04. Regressive analyses revealed that the relative abundance of total ARGs and core resistome both had significant relationships with mobile genetic elements (MGEs). Anthropogenic factors including the consumption of plastic films and soil properties including heavy metals showed good correlations with the diversity of ARGs. Structural equation modelling analysis further explained that anthropogenic factors were the main forces shaping the ARGs patterns. These findings highlight the importance of human activities in shaping soil antibiotic resistome in the croplands, providing potential management strategies to mitigate the dissemination of ARGs to humans via food chain.


Assuntos
Solo , Antibacterianos , China , Produtos Agrícolas , Genes Bacterianos , Microbiologia do Solo
19.
J Hazard Mater ; 389: 121838, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31848095

RESUMO

Heavy metals have been recognized as potential factors driving the evolution and development of antibiotic resistance. However, the relative effects of cadmium (Cd) and arsenic (As) on the prevalence and distribution of antibiotic resistance genes (ARGs) remain unclear. We investigated the co-selection effects of Cd and As on ARGs in 45 paddy soils polluted by heavy metals, using high-throughput quantitative PCR. A total of 119 ARGs and 9 mobile genetic elements (MGEs) were detected in all samples. Regression analysis showed that the single pollution index (PIAs and PICd) and Nemerow integrated pollution index (NIPI) both had significant and positive correlations with ARGs (P < 0.05), indicating the co-selective effects of Cd and As on ARGs distribution. The significant correlations between bacterial taxa and different ARGs in network analysis revealed potential hosts of ARGs. Structural equation models indicated that the effects of As on ARGs were stronger than that of Cd. The profile of ARGs could be impacted by Cd and As indirectly by strongly affecting the bacterial abundance. Overall, this study extended our knowledge about the co-selection of Cd and As on ARGs in paddy soil, and had important implications for assessing the potential risks of ARGs in paddy soils.


Assuntos
Antibacterianos/análise , Arsênio/análise , Cádmio/análise , Farmacorresistência Bacteriana/genética , Microbiologia do Solo , Poluentes do Solo/análise , China , DNA/genética , Monitoramento Ambiental/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Solo/química
20.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295349

RESUMO

Biological nitrogen fixation plays an important role in nitrogen cycling by transferring atmospheric N2 to plant-available N in the soil. However, the diazotrophic activity and distribution in different types of soils remain to be further explored. In this study, 152 upland soils were sampled to examine the diazotrophic abundance, nitrogenase activity, diversity and community composition by quantitative polymerase chain reaction, acetylene reduction assay and the MiSeq sequencing of nifH genes, respectively. The results showed that diazotrophic abundance and nitrogenase activity varied among the three soil types. The diazotrophic community was mainly dominated by Bradyrhizobium, Azospirillum, Myxobacter, Desulfovibrio and Methylobacterium. The symbiotic diazotroph Bradyrhizobium was widely distributed among soils, while the distribution of free-living diazotrophs showed large variation and was greatly affected by multiple factors. Crop type and soil properties directly affected the diazotrophic ɑ-diversity, while soil properties, climatic factors and spatial distance together influenced the diazotrophic community. Network structures were completely different among all three types of soils, with most complex interactions observed in the Red soil. These findings suggest that diazotrophs have various activities and distributions in the three soil types, which played different roles in nitrogen input in agricultural soil in China, being driven by multiple environmental factors.


Assuntos
Bactérias Aeróbias Gram-Negativas/metabolismo , Bactérias Anaeróbias Gram-Negativas/metabolismo , Fixação de Nitrogênio/fisiologia , Oxirredutases/genética , Microbiologia do Solo , Agricultura , Bradyrhizobium , China , Fazendas , Bactérias Aeróbias Gram-Negativas/classificação , Bactérias Aeróbias Gram-Negativas/genética , Bactérias Anaeróbias Gram-Negativas/classificação , Bactérias Anaeróbias Gram-Negativas/genética , Nitrogênio/análise , Solo/química , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...