Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1190624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415810

RESUMO

The dried tuber of Alisma orientale (Sam.) Juzep. (AOJ) is a traditional Chinese medicine with high medicinal value. The endophytic fungi of medicinal plants are a treasure house of natural compounds. However, there is a lack of research on the diversity and biological activity of endophytic fungi of AOJ. In this study, high-throughput sequencing technology was used to study the diversity of endophytic fungi in the roots and stems of AOJ, and endophytic fungi with a high output of phenols and flavonoids were screened by chromogenic reaction, and the antioxidant and antibacterial activities and chemical constituents of crude extracts of their fermentation broth were studied. A total of 3,426 amplicon sequence variants (ASVs) belonging to 9 phyla, 27 classes, 64 orders, 152 families, and 277 genera were identified from AOJ. There were significant differences in the endophytic fungal communities of AOJ roots and stems, as well as in the endophytic fungal communities of triangular AOJ and circular AOJ. In addition, 31 strains of endophytic fungi were isolated from AOJ, of which 6 strains had good antioxidant and antibacterial activities. The crude extract of YG-2 had the strongest free radical scavenging ability and bacteriostatic ability, and its IC50 DPPH, IC50 ABTS, and IC50⋅OH values were 0.009 ± 0.000 mg/mL, 0.023 ± 0.002 mg/mL, and 0.081 ± 0.006 mg/mL, respectively. The results of LC-MS showed that the main component of the crude extract of YG-2 was caffeic acid (10.12 µmol/g). Overall, the results of this study preliminarily elucidated the diversity and community composition of endophytic fungi of AOJ, indicating that AOJ endophytic fungi have abundant secondary metabolites and good antioxidant and antibacterial activities. This study provides an important reference for further research, development and utilization of AOJ endophytic fungi and a theoretical basis for the further development of the endophytic fungus YG-2 (Chaetomium globosum) as a source of antioxidants.

2.
Int J Biol Macromol ; 240: 124377, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37044322

RESUMO

In this study, EPS-Fe(III) complexes were synthesized, and their structural characteristics, thermal stability, antioxidant activity and digestive properties were evaluated. The content of iron in the EPS-Fe(III) complex was 6.34 ± 1.43 %. The absorbance bands of EPS and EPS-Fe(III) complexes were easily changed, indicating that iron ions can interact with the hydroxyl or carboxyl groups of EPS. Energy spectrometric analysis showed that a strong iron signal was observed in the EPS-Fe(III) complex. The IC50 values of the EPS-Fe(III) complex for DPPH, hydroxyl radical and ABTS were 1.52 mg/mL, 2.63 mg/mL and 1.20 mg/mL, respectively. Under oxidative stress, EPS-Fe(III) can prolong the lifespan of nematodes through the DAF-16 and SKN-1 pathways. Under the condition of gastric juice and intestinal juice, the iron content released from artificial intestinal juice reached 66 %. In addition, the negative effect of trypsin or polyphenols on the solubility of iron in EPS-Fe(III) digestive solution was lower than that in ferric chloride digestive solution. In conclusion, the EPS-Fe(III) complex can be used as a new type of iron supplement, which has good antioxidant activity, high stability and good water solubility.


Assuntos
Cordyceps , Ferro , Ferro/metabolismo , Compostos Férricos/química , Antioxidantes/farmacologia , Cordyceps/química
3.
Front Pharmacol ; 13: 1049890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386171

RESUMO

Ligusticum chuanxiong Hort. (CX) is a medicinal and edible plant including a variety of active substances, which may be an available resource for the treatment of related diseases. To expand the medicinal uses of CX, this study aims to explore the antioxidant, anti-aging and neuroprotective effects of the Ligusticum chuanxiong leaves (CXL) and rhizome (CXR) extracts. We first characterize CX phytochemical spectrum by LC-MS as well as antioxidant capacity. Acute toxicity, anti-oxidative stress capacity, lifespan and healthspan was evaluated in C elegans N2. Neuroprotective effect was evaluated in vitro and in vivo (C elegans CL4176 and CL2355). In this study, we detected 74 and 78 compounds from CXR and CXL, respectively, including phthalides, alkaloids, organic acids, terpenes, polyphenols and others. Furthermore, we found that CXs not only protect against oxidative stress, but also prolong the lifespan, alleviate lipofuscin, malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation, and improve movement level, antioxidant enzyme activity in C elegans N2. However, only CXR reduced the ß-amyloid peptide (Aß)-induced paralysis phenotype in CL4176s and alleviated chemosensory behavior dysfunction in CL2355s. In addition, CXR treatment reduced the production of Aß and ROS, enhanced SOD activity in CL4176s. The possible mechanism of anti-aging of CXL and CXR is to promote the expression of related antioxidant pathway genes, increase the activity of antioxidant enzymes, and reduce the accumulation of ROS, which is dependent on DAF-16 and HSF-1 (only in CXR). CXR was able to activate antioxidase-related (sod-3 and sod-5) and heat shock protein genes (hsp-16.1 and hsp-70) expression, consequently ameliorating proteotoxicity related to Aß aggregation. In summary, these findings demonstrate the antioxidant, anti-aging and neuroprotective (only in CXR) activities of the CX, which provide an important pharmacological basis for developing functional foods and drugs to relieve the symptoms of aging and AD. However, the material basis of neuroprotective activity and antiaging effects need to be elucidated, and the relationship between these activities should also be clarified in future studies.

4.
Front Pharmacol ; 13: 983716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110524

RESUMO

The chemical composition and antioxidant activity of extracts (POE) of Penicillium oxalate isolated from Ligusticum chuanxiong Hort have been investigated. However, the biological activity of POE is limited, and its antioxidant, stress resistance and DNA protection effects in vivo are unclear. The current study aims to explore the beneficial effects of POE on DNA damage protection in pBR322 plasmid and lymphocytes and stress resistance in Caenorhabditis elegans. The results showed that POE increased the survival rate of C. elegans under 35°C, UV and H2O2 stress, attenuated ROS and MDA accumulation, and enhanced the activity of some important enzymes (SOD, CTA, and GSH-PX). In addition, the POE-mediated stress resistance involved the upregulation of the expression of the sod-3, sod-5, gst-4, ctl-1, ctl-2, daf-16, hsp-16.1, hsp-16.2, and hsf-1 genes and acted dependently on daf-16 and hsf-1 rather than skn-1. Moreover, POE also reduced lipofuscin levels, but did not prolong the lifespan or damage the growth, reproduction and locomotion of C. elegans. Furthermore, POE showed a protective effect against DNA scission in the pBR322 plasmid and lymphocytes. These results suggested that P. oxalate extracts have significant anti-stress and DNA protection potential and could be potential drug candidates in the pharmaceutical field, thus greatly broadening the understanding of the biological effects of the endophytic fungus P. oxalate.

5.
Front Nutr ; 9: 1052818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704792

RESUMO

The research on the development of dragon fruit and kiwi fruit through LAB-yeast compound fermentation is very limited, and there are few related fermentation products on the market. The purpose of this study was to evaluate the stability of the antioxidant capacity of fermented beverages (FB) through in vitro simulated digestion, to evaluate the changes in metabolites of juice after fermentation through untargeted metabolomics, and used Caenorhabditis elegans as a model to evaluate its anti-aging activity. The results showed that FB not only has good in vitro antioxidant activity, but also the total phenol content (TPC), total flavonoid content (TFC), ABTS scavenging ability, and hydroxyl radical scavenging ability of FB were significantly increased during gastric digestion and intestinal digestion. Metabolomics showed that the contents of phenols and flavonoids related to antioxidant increased after fermentation, and fermentation had a significant effect on organic acids and amino acids in FB. Finally, compared with the control group, although the original concentration of FB has a side-toxic effect on nematodes, the mean lifespan of C. elegans fed with 1.56% FB increased by 18.01%, SOD activity significantly increased by 96.16% and MDA content significantly decreased by 40.62%. FB has good antioxidant activity in vitro and in vivo, and the antioxidant activity is stable during the simulated digestion process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...