Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695188

RESUMO

Tomatoes are frequently challenged by various pathogens, among which Phytophthora capsici (P. capsici) is a destructive soil-borne pathogen that seriously threatens the safe production of tomatoes. Plant growth-promoting rhizobacteria (PGPR) positively induced plant resistance against multiple pathogens. However, little is known about the role and regulatory mechanism of PGPR in tomato resistance to P. capsici. Here, we identified a new strain Serratia plymuthica (S. plymuthica), HK9-3, which has a significant antibacterial effect on P. capsici infection. Meanwhile, stable colonization in roots by HK9-3, even under P. capsici infection, improved tomato growth parameters, root system architecture, photosynthetic capacity, and boosted biomass. Importantly, HK9-3 colonization significantly alleviated the damage caused by P. capsici infection through enhancing ROS scavenger ability and inducing antioxidant defense system and pathogenesis-related (PR) proteins in leaves, as evidenced by elevating the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and chitinase, ß-1,3-glucanase, and increasing the transcripts of POD, SOD, CAT, APX1, PAL1, PAL2, PAL5, PPO2, CHI17 and ß-1,3-glucanase genes. Notably, HK9-3 colonization not only effectively improved soil microecology and soil fertility, but also significantly enhanced fruit yield by 44.6% and improved quality. Our study presents HK9-3 as a promising and effective solution for controlling P. capsici infection in tomato cultivation while simultaneously promoting plant growth and increasing yield, which may have implications for P. capsici control in vegetable production.


Assuntos
Resistência à Doença , Phytophthora , Doenças das Plantas , Rizosfera , Serratia , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/genética , Phytophthora/fisiologia , Serratia/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Antioxidantes/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
2.
Microbiol Res ; 283: 127707, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582011

RESUMO

Salinity stress badly restricts the growth, yield and quality of vegetable crops. Plant growth-promoting rhizobacteria (PGPR) is a friendly and effective mean to enhance plant growth and salt tolerance. However, information on the regulatory mechanism of PGPR on vegetable crops in response to salt stress is still incomplete. Here, we screened a novel salt-tolerant PGPR strain Pseudomonas aeruginosa HG28-5 by evaluating the tomatoes growth performance, chlorophyll fluorescence index, and relative electrolyte leakage (REL) under normal and salinity conditions. Results showed that HG28-5 colonization improved seedling growth parameters by increasing the plant height (23.7%), stem diameter (14.6%), fresh and dry weight in the shoot (60.3%, 91.1%) and root (70.1%, 92.5%), compared to salt-stressed plants without colonization. Likewise, HG28-5 increased levels of maximum photochemical efficiency of PSII (Fv/Fm) (99.3%), the antioxidant enzyme activities as superoxide dismutase (SOD, 85.5%), peroxidase (POD, 35.2%), catalase (CAT, 20.6%), and reduced the REL (48.2%), MDA content (41.3%) and ROS accumulation in leaves of WT tomatoes under salt stress in comparison with the plants treated with NaCl alone. Importantly, Na+ content of HG28-5 colonized salt-stressed WT plants were decreased by15.5% in the leaves and 26.6% in the roots in the corresponding non-colonized salt-stressed plants, which may be attributed to the higher K+ concentration and SOS1, SOS2, HKT1;2, NHX1 transcript levels in leaves of colonized plants under saline condition. Interestingly, increased abscisic acid (ABA) content and upregulation of ABA pathway genes (ABA synthesis-related genes NCED1, NCED2, NCED4, NECD6 and signal genes ABF4, ABI5, and AREB) were observed in HG28-5 inoculated salt-stressed WT plants. ABA-deficient mutant (not) with NCED1 deficiency abolishes the effect of HG28-5 on alleviating salt stress in tomato, as exhibited by the substantial rise of REL and ROS accumulation and sharp drop of Fv/Fm in the leaves of not mutant plants. Notably, HG28-5 colonization enhances tomatoes fruit yield by 54.9% and 52.4% under normal and saline water irrigation, respectively. Overall, our study shows that HG28-5 colonization can significantly enhance salt tolerance and improved fruit yield by a variety of plant protection mechanism, including reducing oxidative stress, regulating plant growth, Na+/K+ homeostasis and ABA signaling pathways in tomato. The findings not only deepen our understanding of PGPR regulation plant growth and salt tolerance but also allow us to apply HG28-5 as a microbial fertilizer for agricultural production in high-salinity areas.


Assuntos
Alphaproteobacteria , Solanum lycopersicum , Pseudomonas aeruginosa/metabolismo , Tolerância ao Sal , Espécies Reativas de Oxigênio , Homeostase , Ácido Abscísico/metabolismo , Antioxidantes , Transdução de Sinais
3.
Plant Physiol Biochem ; 206: 108245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064903

RESUMO

Effective colonization on plant roots is a prerequisite for plant growth promoting rhizobacterias (PGPR) to exert beneficial activities. Light is essential for plant growth, development and stress response. However, how light modulates root colonization of PGPR remains unclear. Here, we found that high red/far red (R/FR) light promoted and low R/FR light inhibited the colonization and growth enhancement of Serratia plymuthica A21-4 (S. plymuthica A21-4) on tomato, respectively. Non-targeted metabolomic analysis of root exudates collected from different R/FR ratio treated tomato seedlings with or without S. plymuthica A21-4 inoculation by UPLC-MS/MS showed that 64 primary metabolites in high R/FR light-grown plants significantly increased compared with those determined for low R/FR light-grown plants. Among them, 7 amino acids, 1 organic acid and 1 sugar obviously induced the chemotaxis and biofilm formation of S. plymuthica A21-4 compared to the control. Furthermore, exogenous addition of five artificial root exudate compontents (leucine, methionine, glutamine, 6-aminocaproic acid and melezitose) regained and further increased the colonization ability and growth promoting ability of S. plymuthica A21-4 on tomato under low R/FR light and high R/FR light, respectively, indicating their involvement in high R/FR light-regulated the interaction of tomato root and S. plymuthica A21-4. Taken together, our results, for the first time, clearly demonstrate that high R/FR light-induced root exudates play a key role in chemotaxis, biofilm formation and root colonization of S. plymuthica A21-4. This study can help promote the combined application of light supplementation and PGPR to facilitate crop growth and health in green agricultural production.


Assuntos
Raízes de Plantas , Serratia , Solanum lycopersicum , Raízes de Plantas/metabolismo , Quimiotaxia/fisiologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Exsudatos e Transudatos , Biofilmes
4.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077098

RESUMO

As a glycophyte plant, pepper (Capsicum annuum L.) is widely cultivated worldwide, but its growth is susceptible to salinity damage, especially at the seedling stage. Here, we conducted a study to determine the physiological and transcriptional differences between two genotype seedlings (P300 and 323F3) with contrasting tolerance under salt stress. The P300 seedlings were more salt-tolerant and had higher K+ contents, higher antioxidase activities, higher compatible solutes, and lower Na+ contents in both their roots and their leaves than the 323F3 seedlings. During RNA-seq analysis of the roots, more up-regulated genes and fewer down-regulated genes were identified between salt-treated P300 seedlings and the controls than between salt-treated 323F3 and the controls. Many ROS-scavenging genes and several SOS pathway genes were significantly induced by salt stress and exhibited higher expressions in the salt-treated roots of the P300 seedlings than those of 323F3 seedlings. Moreover, biosynthesis of the unsaturated fatty acids pathway and protein processing in the endoplasmic reticulum pathway were deeply involved in the responses of P300 to salt stress, and most of the differentially expressed genes involved in the two pathways, including the genes that encode mega-6 fatty acid desaturases and heat-shock proteins, were up-regulated. We also found differences in the hormone synthesis and signaling pathway genes in both the P300 and 323F3 varieties under salt stress. Overall, our results provide valuable insights into the physiological and molecular mechanisms that affect the salt tolerance of pepper seedlings, and present some candidate genes for improving salt tolerance in pepper.


Assuntos
Tolerância ao Sal , Plântula , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Transcriptoma
5.
Biology (Basel) ; 11(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-36101409

RESUMO

To gain insights into the roles of beneficial PGPR in controlling soil-borne disease, we adopted a metabolomics approach to investigate the beneficial impacts of P. polymyxa NSY50 on cucumber seedling roots under the pathogen of Fusarium oxysporum f. sp. cucumerinum (FOC). We found that NSY50 pretreatment (NSY50 + FOC) obviously reduced the production of reactive oxygen species (ROS). Untargeted metabolomic analysis revealed that 106 metabolites responded to NSY50 and/or FOC inoculation. Under FOC stress, the contents of root osmotic adjustment substances, such as proline and betaine were significantly increased, and dehydroascorbic acid and oxidized glutathione (GSH) considerably accumulated. Furthermore, the contents of free amino acids such as tryptophan, phenylalanine, and glutamic acid were also significantly accumulated under FOC stress. Similarly, FOC stress adversely affected glycolysis and the tricarboxylic acid cycles and transferred to the pentose phosphate pathway. Conversely, NSY50 + FOC better promoted the accumulation of α-ketoglutaric acid, ribulose-5-phosphate, and 7-phosphosodiheptanone compared to FOC alone. Furthermore, NSY50 + FOC activated GSH metabolism and increased GSH synthesis and metabolism-related enzyme activity and their encoding gene expressions, which may have improved redox homoeostasis, energy flow, and defense ability. Our results provide a novel perspective to understanding the function of P. polymyxa NSY50, accelerating the application of this beneficial PGPR in sustainable agricultural practices.

6.
Antioxidants (Basel) ; 11(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35453443

RESUMO

The excessive accumulation of copper (Cu2+) has become a threat to worldwide crop production. Recently, it was revealed that melatonin (MT) could play a crucial role against heavy metal (HM) stresses in plants. However, the underlying mechanism of MT function acted upon by Cu2+ stress (CS) has not been substantiated in tomatoes. In the present work, we produced MT-rich tomato plants by foliar usage of MT, and MT-deficient tomato plants by employing a virus-induced gene silencing methodology and exogenous foliar application of MT synthesis inhibitor para-chlorophenylalanine (pCPA). The obtained results indicate that exogenous MT meaningfully alleviated the dwarf phenotype and impeded the reduction in plant growth caused by excess Cu2+. Furthermore, MT effectively restricted the generation of reactive oxygen species (ROS) and habilitated cellular integrity by triggering antioxidant enzyme activities, especially via CAT and APX, but not SOD and POD. In addition, MT increased nonenzymatic antioxidant activity, including FRAP and the GSH/GSSG and ASA/DHA ratios. MT usage improved the expression of several defense genes (CAT, APX, GR and MDHAR) and MT biosynthesis-related genes (TDC, SNAT and COMT). Taken together, our results preliminarily reveal that MT alleviates Cu2+ toxicity via ROS scavenging, enhancing antioxidant capacity when subjected to excessive Cu2+. These results build a solid foundation for developing new insights to solve problems related to CS.

7.
Ecotoxicol Environ Saf ; 192: 110285, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32035398

RESUMO

Iron deficiency severely affects crop yield and quality. Gamma-aminobutyric acid (GABA) plays a vital role in plant responses to multifarious stresses. However, the role of GABA in Fe deficiency responses and the potential mechanisms remain largely unknown in cucumber. Here, we found that Fe deficiency raised the GABA levels in leaves and roots of cucumber. To probe the role of GABA in Fe deficiency, the seedlings were subjected to five levels of GABA concentrations (0, 5, 10, 20 and 40 mmol L-1) for 7 days under Fe deficiency. The results demonstrated that 20 mM GABA in alleviating the Fe deficiency-induced stress was the most effective. GABA pretreatment reduced the Fe deficiency-induced chlorosis and inhibition of photosynthesis and growth, and significantly enhanced the contents of iron in shoots and roots. Exogenous GABA significantly decreased the pH of nutrient solution and increased ferric-chelate reductase (FCR) activity induced by Fe deficiency and the transcript levels of Fe uptake-related genes HA1, FRO2 and IRT1 in roots. GABA also increased the content of auxin (IAA) and expression of auxin biosynthesis (YUC4), response (IAA1), and transport (PIN1) genes under Fe deficiency. Furthermore, exogenous the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) application abolished the GABA-induced changes in Fe deficiency. In summary, we found that GABA improves tolerance to iron deficiency via an auxin-dependent mechanism in cucumber.


Assuntos
Cucumis sativus/metabolismo , Ácidos Indolacéticos/metabolismo , Ferro/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transporte Biológico , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/farmacologia
8.
Mycobiology ; 40(3): 214-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23115518

RESUMO

Soft rot on banana fruit caused by Rhizopus oryzae was identified for the first time in Korea. Colonies were white to light brown and formed numerous sporangiospores. Optimum temperature for mycelial growth was 30℃. Sporangia were globose and 30~200 µm. Sporangiophores were usually straight, 8~20 µm, and rhizoids usually in groups of 3~5. Columella were globose to sub-globose and 90~110 µm. Sporangiospores were sub-globose or oval and 4~10 µm. Based on its mycological characteristics, molecular analysis, and pathogenicity to host plants, this fungus was identified as Rhizopus oryzae Went & Prisen Geerligs. This is the first report of soft rot on banana caused by Rhizopus oryzae in Korea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...