Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2481-2484, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691749

RESUMO

A terahertz (THz) fan-beam computed tomography (CT) system using a 0.3 THz continuous-wave sheet beam is proposed. The diffraction-free sheet beam expands in a fan shape in only one direction and provides propagation-invariant focal lines and extended the depth-of-field. The fan-beam CT based on this beam is the second-generation THz CT. It breaks the conventional 4-f symmetric structure of THz CT using the parallel beam. The fan-beam THz CT allows for use with a linear array detector, which reduces the time required to collect data. To demonstrate its feasibility for three-dimensional (3D) imaging, the 3D structure of a metal rod packed in a carton is reconstructed with the support of the system. The results show that the object's internal structure can be obtained by this new THz CT system while retaining the geometrically magnified features of the cross-sectional structure. The results of our research provide a template for the second-generation THz CT system, which provides an additional method for nondestructive testing.

2.
Opt Express ; 28(24): 36873-36883, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379771

RESUMO

An effective approach is proposed for obtaining a long-distance THz diffraction-free beam with meter-scale length. Multiple 3D-printed lens-axicon doublets are cascaded to form the generation system. In order to manifest the physical mechanism behind the generation process of this long-distance diffraction-free beam, we make a detailed comparative analysis of three beams: the ideal Bessel beam, the quasi-Bessel beam generated by single axicon, and the diffraction-free beam generated by the lens-axicon doublets. Theoretical results show that the zero-radial-spatial-frequency component plays a key role during the generation process of the third beam. Moreover, the intensities of this component are enhanced with the increase in the number of lens-axicon doublets, making the diffraction-free length longer. An experiment containing three lens-axicon doublets is performed to demonstrate the feasibility of our design. A 0.1-THz beam with one-meter diffraction-free length was successfully generated. Further experiments indicate that this THz diffraction-free beam also has a self-healing property. We believe that such long-distance diffraction-free beams can be used in practical THz remote sensing or imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...