Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr HIV Res ; 18(5): 332-341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32562524

RESUMO

BACKGROUND: Acquired immunodeficiency syndrome can hardly be cured currently and people with human immunodeficiency virus (HIV) need lifelong treatment that may result in the emergence of drug resistance which leads to failed treatment. Thus, the development of new anti- HIV drugs and new treatment regimens are necessary. OBJECTIVE: The aim of this study is to analyze the combined anti-HIV activity of tenofovir disoproxil fumarate, lamivudine and ACC007, a new non-nucleoside reverse transcriptase inhibitor. METHODS: The antiviral activity of tenofovir disoproxil fumarate, lamivudine and ACC007 alone or in combination against different HIV-1 strains was determined by the detection of HIV-1 p24 level through enzyme-linked immunosorbent assay. RESULT: ACC007 showed EC50 of nanomolar range (from 3.03 nM to 252.59 nM) against all HIV-1 strains used in this study except the HIV-1A17, with EC50 of 1.57 µM. The combined antiviral activity of ACC007, lamivudine and tenofovir disoproxil fumarate showed synergy antiviral activity against all HIV-1 strains used in this study. The three-drug combination showed moderate synergism against HIV-1A17, HIV-14755-5, HIV-1K103N and HIV-1V106M, with a combination index value ranging from 0.71 to 0.87, and showed synergism against the other HIV-1 strains with combination index value from 0.35 to 0.67. The combination with ACC007 significantly increases the dose reduction index value of lamivudine and tenofovir disoproxil fumarate, compared with two-drug combination. CONCLUSION: ACC007 exhibits potent antiviral activity alone or with 3TC and TDF, and exerts synergistic effect against all HIV strains used in our investigation in vitro.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Lamivudina/uso terapêutico , Inibidores da Transcriptase Reversa/uso terapêutico , Tenofovir/uso terapêutico , Sinergismo Farmacológico , Infecções por HIV/virologia , Humanos
2.
Biotechnol Biofuels ; 9: 103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27175216

RESUMO

BACKGROUND: Water-forming NADH oxidase can oxidize cytosolic NADH to NAD(+), thus relieving cytosolic NADH accumulation in Saccharomyces cerevisiae. Previous studies of the enzyme were conducted under aerobic conditions, as O2 is the recognized electron acceptor of the enzyme. In order to extend its use in industrial production and to study its effect on anaerobes, the effects of overexpression of this oxidase in S. cerevisiae BY4741 and Clostridium acetobutylicum 428 (Cac-428) under anaerobic conditions were evaluated. RESULTS: Glucose was exhausted in the NADH oxidase-overexpressing S. cerevisiae strain (Sce-NOX) culture after 26 h, while 43.51 ± 2.18 g/L residual glucose was left in the control strain (Sce-CON) culture at this time point. After 30 h of fermentation, the concentration of ethanol produced by Sce-NOX reached 36.28 ± 1.81 g/L, an increase of 56.38 % as compared to Sce-CON (23.20 ± 1.16 g/L), while the byproduct glycerol was remarkably decreased in the culture of Sce-NOX. In the case of the C. acetobutylicum strain (Cac-NOX) overexpressing NADH oxidase, glucose consumption, cell growth rate, and the production of acetone-butanol-ethanol (ABE) all decreased, while the concentrations of acetic acid and butyric acid increased as compared to the control strain (Cac-CON). During fermentation of Cac-CON and Cac-NOX in 100-mL screw-capped bottles, the concentrations of ABE increased with increasing headspace. Additionally, several alternative electron acceptors in C. acetobutylicum fermentation were tested. Nitroblue tetrazolium and 2,6-dichloroindophenol were lethiferous to both Cac-CON and Cac-NOX. Methylene blue could relieve the effect caused by the overexpression of the NADH oxidase on the metabolic network of C. acetobutylicum strains, while cytochrome c aggravated the effect. CONCLUSIONS: The water-forming NADH oxidase could regulate the metabolism of both the S. cerevisiae and the C. acetobutylicum strains in anaerobic conditions. Thus, the recombinant S. cerevisiae strain might be useful in industrial production. Besides the recognized electron acceptor O2, methylene blue and/or the structural analogs may be the alternative elector acceptor of the NADH oxidase in anaerobic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA