Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(43): 29847-29861, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37842680

RESUMO

The future trend in achieving precision medicine involves the development of non-invasive cancer biomarker sensors that offer high accuracy, low cost, and time-saving benefits for risk clarification, early detection, disease detection, and therapeutic monitoring. A facile approach for the synthesis of MoO3 nanosheets was developed by thermally oxidizing MoS2 nanosheets in air followed by thermal annealing. Subsequently, Au@MnO2 nanocomposites were prepared using a combined hydrothermal process and in situ chemical synthesis. In this study, we present a novel immunosensor design strategy involving the immobilization of antiHSP70 antibodies on Au@MnO2/MoO3 nanocomposites modified on a screen-printed electrode (SPE) using EDC/NHS chemistry. This study establishes HSP70 as a potential biomarker for monitoring therapeutic response during anticancer therapy. Impedance measurements of HSP70 on the Au@MnO2/MoO3/SPE immunosensor using EIS showed an increase in impedance with an increase in HSP70 concentration. The electrochemical immunosensor demonstrated a good linear response in the range of 0.001 to 1000 ng mL-1 with a detection limit of 0.17 pg mL-1 under optimal conditions. Moreover, the immunosensor was effective in detecting HSP70 at low concentrations in a lung adenocarcinoma cell line following Paclitaxel treatment, indicating its potential for early detection of the HSP70 biomarker in organ-on-a-chip and clinical applications.

2.
Adv Sci (Weinh) ; 10(16): e2206603, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085943

RESUMO

Lung cancer remains a major health problem despite the considerable research into prevention and treatment methods. Through a deeper understanding of tumors, patient-specific ex vivo spheroid models with high specificity can be used to accurately investigate the cause, metastasis, and treatment strategies for lung cancer. Biofabricate lung tumors are presented, consisting of patient-derived tumor spheroids, endothelial cells, and lung decellularized extracellular matrix, which maintain a radial oxygen gradient, as well as biophysicochemical behaviors of the native tumors for precision medicine. It is also demonstrated that the developed lung-cancer spheroid model reproduces patient responses to chemotherapeutics and targeted therapy in a co-clinical trial, with 85% accuracy, 86.7% sensitivity, and 80% specificity. RNA sequencing analysis validates that the gene expression in the spheroids replicates that in the patient's primary tumor. This model can be used as an ex vivo predictive model for personalized cancer therapy and to improve the quality of clinical care.


Assuntos
Neoplasias Pulmonares , Esferoides Celulares , Humanos , Células Tumorais Cultivadas , Células Endoteliais/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia
3.
Environ Sci Pollut Res Int ; 30(7): 18985-18997, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36223019

RESUMO

Physicochemical properties of nanoparticles are important in regulating nanoparticle toxicity; however, the contribution of nanoparticle charge remains unclear. The objective of this study was to investigate the pulmonary effects of inhalation of charged soot nanoparticles. We established a stably charged nanoparticle generation system for whole-body exposure in BALB/c mice, which produced positively charged, negatively charged, and neutral soot nanoparticles in a wide range of concentrations. After a 7-day exposure, pulmonary toxicity was assessed, together with proteomics analysis. The charged soot nanoparticles on average carried 1.17-1.35 electric charges, and the sizes for nanoparticles under different charging conditions were all fixed at 69 ~ 72 nm. We observed that charged soot nanoparticles induced cytotoxic LDH and increased lung permeability, with the release of 8-isoprostane and caspase-3 and systemic IL-6 in mice, especially for positively charged soot nanoparticles. Next, we observed that positive-charged soot nanoparticles upregulated Eif2, Eif4, sirtuin, mammalian target of rapamycin (mTOR), peroxisome proliferator-activated receptors (PPAR), and HIPPO-related signaling pathways in the lungs compared with negatively charged soot nanoparticles. HIF1α, sirt1, E-cadherin, and Yap were increased in mice's lungs by positively charged soot nanoparticle exposure. In conclusion, carbonaceous nanoparticles carrying electric ions, especially positive-charged, are particularly toxic when inhaled and should be of concern in terms of pulmonary health protection.


Assuntos
Nanopartículas , Fuligem , Animais , Camundongos , Fuligem/química , Pulmão , Nanopartículas/toxicidade , Nanopartículas/química , Administração por Inalação , Mamíferos
4.
Biomed Opt Express ; 13(4): 1995-2005, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519254

RESUMO

Using in vivo multiphoton fluorescent dosimetry, we demonstrate that the clearance dynamics of Indocyanine Green (ICG) in the blood can quickly reveal liver function reserve. In normal rats, the ICG retention rate was below 10% at the 15-minute post-administration; While in the rat with severe hepatocellular carcinoma (HCC), the 15-minute retention rate is over 40% due to poor liver metabolism. With a 785 nm CW laser, the fluorescence dosimeter can evaluate the liver function reserve at a 1/10 clinical dosage of ICG without any blood sampling. In the future, this low-dosage ICG 15-minute retention dosimetry can be applied for the preoperative assessment of hepatectomy or timely perioperative examination.

5.
Materials (Basel) ; 14(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832205

RESUMO

Articular cartilage, which is a white transparent tissue with 1-2 mm thickness, is located in the interface between the two hard bones. The main functions of articular cartilage are stress transmission, absorption, and friction reduction. The cartilage cannot be repaired and regenerated once it has been damaged, and it needs to be replaced by artificial joints. Many approaches, such as artificial joint replacement, hyaluronic acid injection, microfracture surgery and cartilage tissue engineering have been applied in clinical treatment. Basically, some of these approaches are foreign material implantation for joint replacement to reach the goal of pain reduction and mechanism support. This study demonstrated another frontier in the research of cartilage reconstruction by applying regeneration medicine additive manufacturing (3D Printing) and stem cell technology. Light curing materials have been modified and tested to be printable and cytocompatible for stem cells in this research. Design of experiments (DOE) is adapted in this investigation to search for the optimal manufacturing parameter for biocompatible scaffold fabrication and stem cell attachment and growth. Based on the results, an optimal working process of biocompatible and printable scaffolds for cartilage regeneration is reported. We expect this study will facilitate the development of cartilage tissue engineering.

6.
Adv Sci (Weinh) ; 8(20): e2102788, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34414696

RESUMO

The encapsulation and/or surface modification can stabilize and protect the phosphorescence bio-probes but impede their intravenous delivery across biological barriers. Here, a new class of biocompatible rhenium (ReI ) diimine carbonyl complexes is developed, which can efficaciously permeate normal vessel walls and then functionalize the extravascular collagen matrixes as in situ oxygen sensor. Without protective agents, ReI -diimine complex already exhibits excellent emission yield (34%, λem   = 583 nm) and large two-photon absorption cross-sections (σ2   = 300 GM @ 800 nm) in water (pH 7.4). After extravasation, remarkably, the collagen-bound probes further enhanced their excitation efficiency by increasing the deoxygenated lifetime from 4.0 to 7.5 µs, paving a way to visualize tumor hypoxia and tissue ischemia in vivo. The post-extravasation functionalization of extracellular matrixes demonstrates a new methodology for biomaterial-empowered phosphorescence sensing and imaging.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Colágeno/metabolismo , Substâncias Luminescentes/farmacologia , Oxigênio/metabolismo , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Colágeno/genética , Humanos , Irídio/farmacologia , Microscopia Confocal , Neoplasias/genética , Neoplasias/patologia , Fótons , Rênio/química , Hipóxia Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
7.
Biofabrication ; 12(2): 022001, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822648

RESUMO

Over the years, the field of bioprinting has attracted attention for its highly automated fabrication system that enables the precise patterning of living cells and biomaterials at pre-defined positions for enhanced cell-matrix and cell-cell interactions. Notably, vat polymerization (VP)-based bioprinting is an emerging bioprinting technique for various tissue engineering applications due to its high fabrication accuracy. Particularly, different photo-initiators (PIs) are utilized during the bioprinting process to facilitate the crosslinking mechanism for fabrication of high-resolution complex tissue constructs. The advancements in VP-based printing have led to a paradigm shift in fabrication of tissue constructs from cell-seeding of tissue scaffolds (non-biocompatible fabrication process) to direct bioprinting of cell-laden tissue constructs (biocompatible fabrication process). This paper, presenting a first-time comprehensive review of the VP-based bioprinting process, provides an in-depth analysis and comparison of the various biocompatible PIs and highlights the important considerations and bioprinting requirements. This review paper reports a detailed analysis of its printing process and the influence of light-based curing modality and PIs on living cells. Lastly, this review also highlights the significance of VP-based bioprinting, the regulatory challenges and presents future directions to transform the VP-based printing technology into imperative tools in the field of tissue engineering and regenerative medicine. The readers will be informed on the current limitations and achievements of the VP-based bioprinting techniques. Notably, the readers will realize the importance and value of highly-automated platforms for tissue engineering applications and be able to develop objective viewpoints towards this field.


Assuntos
Bioimpressão/métodos , Polímeros/síntese química , Animais , Bioimpressão/instrumentação , Adesão Celular , Humanos , Polimerização , Polímeros/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química
8.
Polymers (Basel) ; 11(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726652

RESUMO

The purpose of 4D printing is to embed a product design into a deformable smart material using a traditional 3D printer. The 3D printed object can be assembled or transformed into intended designs by applying certain conditions or forms of stimulation such as temperature, pressure, humidity, pH, wind, or light. Simply put, 4D printing is a continuum of 3D printing technology that is now able to print objects which change over time. In previous studies, many smart materials were shown to have 4D printing characteristics. In this paper, we specifically review the current application, respective activation methods, characteristics, and future prospects of various polymeric materials in 4D printing, which are expected to contribute to the development of 4D printing polymeric materials and technology.

9.
Polymers (Basel) ; 11(9)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450605

RESUMO

Cardiovascular diseases are currently the most common cause of death globally and of which, the golden treatment method for severe cardiovascular diseases or coronary artery diseases are implantations of synthetic vascular grafts. However, such grafts often come with rejections and hypersensitivity reactions. With the emergence of regenerative medicine, researchers are now trying to explore alternative ways to produce grafts that are less likely to induce immunological reactions in patients. The main goal of such studies is to produce biocompatible artificial vascular grafts with the capability of allowing cellular adhesion and cellular proliferation for tissues regeneration. The Design of Experimental concepts is employed into the manufacturing process of digital light processing (DLP) 3D printing technology to explore near-optimal processing parameters to produce artificial vascular grafts with vascular characteristics that are close to native vessels by assessing for the cause and effect relationships between different ratios of amino resin (AR), 2-hydroxyethyl methacrylate (HEMA), dopamine, and curing durations. We found that with proper optimization of fabrication procedures and ratios of materials, we are able to successfully fabricate vascular grafts with good printing resolutions. These had similar physical properties to native vessels and were able to support cellular adhesion and proliferation. This study could support future studies in exploring near-optimal processes for fabrication of artificial vascular grafts that could be adapted into clinical applications.

10.
J Mater Sci Mater Med ; 30(6): 68, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31165270

RESUMO

Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11-19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton's jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects.


Assuntos
Cimentos Ósseos/química , Regeneração Óssea , Compostos de Cálcio/química , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Silicatos/química , Estrôncio/química , Fosfatase Alcalina/metabolismo , Antraquinonas/química , Materiais Biocompatíveis/química , Substitutos Ósseos , Fosfatos de Cálcio/química , Adesão Celular , Proliferação de Células , Humanos , Íons , Osteocalcina/química , Pós , Regeneração , Células-Tronco/citologia , Resistência à Tração , Geleia de Wharton/metabolismo
11.
Int J Bioprint ; 5(2): 197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32596535

RESUMO

With the development of three-dimensional (3D) printing, many commercial 3D printing materials have been applied in the fields of biomedicine and medical. MED610 is a clear, biocompatible PolyJet material that is medically certified for bodily contact. In this study, the polydopamine (PDA)/hydroxyapatite (HA) coating was added to the printed MED610 objects to evaluate its physical properties, cell proliferation, cell morphology, and alkaline phosphatase expression level. The results show that the PDA/HA coating helps printed objects to enhance the hardness, biocompatibility, and osteogenic differentiation potential. We expect that PDA/HA coatings contribute to the applicability of MED610 in biomedical and medical applications.

12.
Materials (Basel) ; 12(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587793

RESUMO

Selective Laser Melting (SLM) has been implemented to address the difficulties in manufacturing complex nickel titanium (NiTi) structures. However, the SLM production of NiTi is much more challenging than the fabrication of conventional metals. Other than the need to have a high density that leads to excellent mechanical properties, strict chemical compositional control is required as well for the SLM NiTi parts to exhibit desirable phase transformation characteristics. In addition, acquiring a high transformation strain from the produced specimens is another challenging task. In the prior research, a new approach-repetitive scanning-was implemented to achieve these objectives. The repetitively scanned samples demonstrated an average of 4.61% transformation strain when subjected to the tensile test. Nevertheless, there is still room for improvement as the conventionally-produced NiTi can exhibit a transformation strain of about 6%. Hence, post-process heat treatment was introduced to improve the shape memory properties of the samples. The results showed an improvement when the samples were heat treated at a temperature of 400 °C for a period of 5 min. The enhancement in the shape memory behavior of the repetitively scanned samples was mainly attributed to the formation of fine Ni4Ti3 metastable precipitates.

13.
Materials (Basel) ; 11(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223515

RESUMO

Aminolevulinic acid (ALA) based photodynamic antimicrobial strategy can provide good antimicrobial effects and be used for medical applications. The aim of this study was to apply this strategy to Mineral Trioxide Aggregate (MTA), which is commonly used as a filling material for root endings and by doing so, to increase the bactericidal capability of MTA, as well as to investigate its characterization, cytocompatibility, and odontogenic differentiation potential. MTA is known to be a derivative of calcium silicate (CS). In this study, MTA specimens with or without ALA and light treatment were prepared. Diametral tensile strength values (DTS), setting durations, X-ray diffraction (XRD) spectra, apatite-mineralization, and antimicrobial abilities of the MTA, were also analyzed. Human dental pulp cells (hDPCs) can proliferate into the newly formed matrix and differentiate into odontoblasts to reinforce and strengthen the root. Levels of hDPCs proliferation and its odontogenic capabilities when cultured on MTA with ALA and light treatment, and the percentages of cells existing in the various cell cycle stages, were further evaluated in this study. The results indicated that MTA added ALA with light treatment had greater antibacterial ability and cytocompatibility, compared to MTA alone. A higher percentage S phase of the cells cultured on MTA added ALA with light treatment was observed. Furthermore, hDPCs cultured on MTA added ALA with light treatment had the highest expression levels of the odontoblastic differentiation markers. ALA has great antimicrobial efficiency and is a potential material for future medical applications. ALA-based photodynamic antibacterial strategy applied in the MTA has great antibacterial ability, cytocompatibility, and odontoblastic differentiation potential, and can facilitate the development of root canal treatment.

14.
Mater Sci Eng C Mater Biol Appl ; 91: 679-687, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033302

RESUMO

3D printing has been popularly used in the bone tissue engineering, as many of the biomaterials for this field of study can be prepared for and produced from this additive manufacturing technique. In this study, we strategized a solvent-free processing to fabricate the polydopamine-modified calcium silicate (PDACS)/poly-caprolactone (PCL) scaffold with Wharton's jelly mesenchymal stem cells (WJMSCs) incorporated with human umbilical vein endothelial cells (HUVEC)-laden hydrogel. The PDACS/PCL/hydrogel 3D scaffold yielded a Young's modulus of the 3D scaffolds as high as 75 MPa. In addition, the vascular morphogenesis and cellular behaviors regulated by our hybrid scaffolds were also intricately evaluated. Furthermore, the HUVEC in the bioink exhibited higher levels of angiogenic biomarkers and showed potential for the formation of complex vascular networks. Higher levels of bone formation proteins were also observed in our composites. Such a hybrid of synthetic materials with cell constituents not only enhances osteogenesis but also stimulates vessel network development in angiogenesis, presenting the fact that 3D printing can be further applied in improving bone tissue regeneration in numerous aspects. We believe that this method may serve as a useful and effective approach for the regeneration of defective complex hard tissues in deep bone structures.


Assuntos
Bioimpressão , Bivalves/química , Compostos de Cálcio/farmacologia , Hidrogéis/farmacologia , Neovascularização Fisiológica , Osteogênese , Impressão Tridimensional , Silicatos/farmacologia , Alicerces Teciduais/química , Animais , Proliferação de Células/efeitos dos fármacos , Módulo de Elasticidade , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Indóis/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoprotegerina/metabolismo , Espectroscopia Fotoeletrônica , Poliésteres/química , Polímeros/química , Porosidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Geleia de Wharton/citologia , Difração de Raios X
15.
Materials (Basel) ; 11(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596320

RESUMO

NiTi shape memory alloys (SMAs) have the best combination of properties among the different SMAs. However, the limitations of conventional manufacturing processes and the poor manufacturability of NiTi have critically limited its full potential applicability. Thus, additive manufacturing, commonly known as 3D printing, has the potential to be a solution in fabricating complex NiTi smart structures. Recently, a number of studies on Selective Laser Melting (SLM) of NiTi were conducted to explore the various aspects of SLM-produced NiTi. Compared to producing conventional metals through the SLM process, the fabrication of NiTi SMA is much more challenging. Not only do the produced parts require a high density that leads to good mechanical properties, strict composition control is needed as well for the SLM NiTi to possess suitable phase transformation characteristics. Additionally, obtaining a good shape memory effect from the SLM NiTi samples is another challenging task that requires further understanding. This paper presents the results of the effects of energy density and SLM process parameters on the properties of SLM NiTi. Its shape memory properties and potential applications were then reviewed and discussed.

16.
Int J Bioprint ; 4(2): 140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33102918

RESUMO

Vascular networks have an important role to play in transporting nutrients, oxygen, metabolic wastes and maintenance of homeostasis. Bioprinting is a promising technology as it is able to fabricate complex, specific multi-cellular constructs with precision. In addition, current technology allows precise depositions of individual cells, growth factors and biochemical signals to enhance vascular growth. Fabrication of vascularized constructs has remained as a main challenge till date but it is deemed as an important stepping stone to bring organ engineering to a higher level. However, with the ever advancing bioprinting technology and knowledge of biomaterials, it is expected that bioprinting can be a viable solution for this problem. This article presents an overview of the biofabrication of vascular and vascularized constructs, the different techniques used in vascular engineering such as extrusion-based, droplet-based and laser-based bioprinting techniques, and the future prospects of bioprinting of artificial blood vessels.

17.
J Mater Sci Mater Med ; 29(1): 11, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29282550

RESUMO

The present study provides a solvent-free processing method for establishing the ideal porous 3-dimension (3D) scaffold filled with different ratios of calcium silicate-based (CS) powder and polycaprolactone (PCL) for 3D bone substitute application. Characterization of hybrid scaffolds developed underwent assessments for physicochemical properties and biodegradation. Adhesion and growth of human Wharton's Jelly mesenchymal stem cells (WJMSCs) on the CS/PCL blended scaffold were investigated in vitro. Cell attachment and morphology were examined by scanning electron microscope (SEM) and confocal microscope observations. Colorimetric assay was tested for assessing cell metabolic activity. In addition, RT-qPCR was also performed for the osteogenic-related and angiogenesis-related gene expression. As a result, the hydrophilicity of the scaffolds was further significantly improved after we additive CS into PCL, as well as the compressive strength up to 5.8 MPa. SEM showed that a great amount of precipitated bone-like apatite formed on the scaffold surface after immersed in the simulated body fluid. The 3D-printed scaffolds were found to enhance cell adhesion, proliferation and differentiation. Additionally, results of osteogenesis and angiogenesis proteins were expressed obviously greater in the response of WJMSCs. These results indicate the CS/PCL composite exhibited a favorable bioactivity and osteoconductive properties that could be served as a promising biomaterial for bone tissue engineering scaffolds.


Assuntos
Materiais Biocompatíveis/química , Osso e Ossos/patologia , Compostos de Cálcio/química , Silicatos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Biodegradação Ambiental , Adesão Celular , Diferenciação Celular , Proliferação de Células , Colorimetria , Humanos , Íons , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Osteogênese , Pós , Temperatura , Termogravimetria , Geleia de Wharton , Difração de Raios X
18.
Materials (Basel) ; 10(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28772498

RESUMO

Diseases in articular cartilages have affected millions of people globally. Although the biochemical and cellular composition of articular cartilages is relatively simple, there is a limitation in the self-repair ability of the cartilage. Therefore, developing strategies for cartilage repair is very important. Here, we report on a new liquid resin preparation process of water-based polyurethane based photosensitive materials with hyaluronic acid with application of the materials for 3D printed customized cartilage scaffolds. The scaffold has high cytocompatibility and is one that closely mimics the mechanical properties of articular cartilages. It is suitable for culturing human Wharton's jelly mesenchymal stem cells (hWJMSCs) and the cells in this case showed an excellent chondrogenic differentiation capacity. We consider that the 3D printing hybrid scaffolds may have potential in customized tissue engineering and also facilitate the development of cartilage tissue engineering.

19.
Ecotoxicol Environ Saf ; 144: 578-584, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688360

RESUMO

The structure and function of soil microbial communities have been widely used as indicators of soil quality and fertility. The effect of biochar application on carbon sequestration has been studied, but the effect on soil microbial functional diversity has received little attention. We evaluated effects of biochar application on the functional diversities of microbes in a loam soil. The effects of biochar on microbial activities and related processes in the 0-10 and 10-20cm soil layers were determined in a two-year experiment in maize field on the Loess Plateau in China. Low-pyrolysis biochar produced from maize straw was applied into soils at rates of 0 (BC0), 10 (BC10) and 30 (BC30)tha-1. Chemical analysis indicated that the biochar did not change the pH, significantly increased the amounts of organic carbon and nitrogen, and decreased the amount of mineral nitrogen and the microbial quotient. The biochar significantly decreased average well colour development (AWCD) values in Biolog EcoPlates™ for both layers, particularly for the rate of 10tha-1. Biochar addition significantly decreased substrate richness (S) except for BC30 in the 0-10cm layer. Effects of biochar on the Shannon-Wiener index (H) and Simpson's dominance (D) were not significant, except for a significant increase in evenness index (E) in BC10 in the 10-20cm layer. A principal component analysis clearly differentiated the treatments, and microbial use of six categories of substrates significantly decreased in both layers after biochar addition, although the use of amines and amides did not differ amongst the three treatments in the deeper layer. Maize above ground dry biomass and height did not differ significantly amongst the treatments, and biochar had no significant effect on nitrogen uptake by maize seedlings. H was positively correlated with AWCD, and negatively with pH. AWCD was positively correlated with mineral N and negatively with pH. Our results indicated that shifts in soil microbial functional diversity affected by biochar were not effective indicators of soil quality in earlier maize growth periods in this region.


Assuntos
Carvão Vegetal/química , Microbiologia do Solo/normas , Solo/química , Zea mays/crescimento & desenvolvimento , Biomassa , China , Nitrogênio/metabolismo , Análise de Componente Principal , Zea mays/metabolismo
20.
J Formos Med Assoc ; 116(9): 679-688, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28684019

RESUMO

BACKGROUND/PURPOSE: Calcium silicate (CS) cements have excellent bioactivity and can induce the bone-like apatite formation. They are good biomaterials for bone tissue engineering and bone regenerative medicine. However, they have degradability and the dissolved CS can cause the inflammatory response at the early post-implantation stage. The purpose of this study was to design and prepare the curcumin-loaded mesoporous CS (MesoCS/curcumin) cements as a strategy to reduce the inflammatory reaction after implantation. METHODS: The MesoCS/curcumin cements were designed and prepared. The characteristics of MesoCS/curcumin specimens were examined by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their physical properties, biocompatibility, and anti-inflammatory ability were also evaluated. RESULTS: The MesoCS/curcumin cements displayed excellent biocompatibility and physical properties. Their crystalline characterizations were very similar with MesoCS cements. After soaking in simulated body fluid, the bone-like apatite layer of the MesoCS/curcumin cements could be formed. In addition, it could inhibit the expression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) after inflammation reaction induced by lipopolysaccharides and had good anti-inflammatory ability. CONCLUSION: Adding curcumin in MesoCS cements can reduce the inflammatory reaction, but does not affect the original biological activity and properties of MesoCS cements. It can provide a good strategy to inhibit the inflammatory reaction after implantation for bone tissue engineering and bone regenerative medicine.


Assuntos
Anti-Inflamatórios/farmacologia , Curcumina/farmacologia , Cimento de Silicato/química , Células Cultivadas , Curcumina/química , Humanos , Interleucina-1/biossíntese , Teste de Materiais , Porosidade , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...