Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(18): 188202, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204910

RESUMO

Hydrodynamic interactions can give rise to a collective motion of rotating particles. This, in turn, can lead to coherent fluid flows. Using large scale hydrodynamic simulations, we study the coupling between these two in spinner monolayers at weakly inertial regime. We observe an instability, where the initially uniform particle layer separates into particle void and particle rich areas. The particle void region corresponds to a fluid vortex, and it is driven by a surrounding spinner edge current. We show that the instability originates from a hydrodynamic lift force between the particle and fluid flows. The cavitation can be tuned by the strength of the collective flows. It is suppressed when the spinners are confined by a no-slip surface, and multiple cavity and oscillating cavity states are observed when the particle concentration is reduced.

2.
Phys Rev Lett ; 130(1): 014001, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669217

RESUMO

Transport of deformable particles in a honeycomb network is studied numerically. It is shown that the particle deformability has a strong impact on their distribution in the network. For sufficiently soft particles, we observe a short memory behavior from one bifurcation to the next, and the overall behavior consists in a random partition of particles, exhibiting a diffusionlike transport. On the contrary, stiff enough particles undergo a biased distribution whereby they follow a deterministic partition at bifurcations, due to long memory. This leads to a lateral ballistic drift in the network at small concentration and anomalous superdiffusion at larger concentration, even though the network is ordered. A further increase of concentration enhances particle-particle interactions which shorten the memory effect, turning the particle anomalous diffusion into a classical diffusion. We expect the drifting and diffusive regime transition to be generic for deformable particles.


Assuntos
Difusão , Transporte Biológico
3.
Phys Rev Lett ; 125(22): 228002, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315446

RESUMO

We study the dynamics of torque driven spherical spinners settled on a surface, and demonstrate that hydrodynamic interactions at finite Reynolds numbers can lead to a concentration dependent and nonuniform crystallization. At semidilute concentrations, we observe a rapid formation of a uniform hexagonal structure in the spinner monolayer. We attribute this to repulsive hydrodynamic interactions created by the secondary flow of the spinning particles. Increasing the surface coverage leads to a state with two coexisting spinner densities. The uniform hexagonal structure deviates into a high density crystalline structure surrounded by a continuous lower density hexatically ordered state. We show that this phase separation occurs due to a nonmonotonic hydrodynamic repulsion, arising from a concentration dependent spinning frequency.

4.
Microvasc Res ; 125: 103878, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31051161

RESUMO

It is pivotal that endothelium-dependent Nitric Oxide (NO) consumed by hemoglobin (Hb) inside red blood cells (RBCs) membrane, regulates the vascular tone. The whole processes of NO transport in vessel containing flowing RBCs is still not clear, such as NO production in endothelium, diffusion in plasma and consumption inside RBCs. In this work, the motion of RBCs in a microvessel is investigated by using immersed boundary lattice Boltzmann method (IB-LBM) first and the deformability of RBCs is expressed by using spring network model which is based on the minimum energy principle. Furthermore, the interaction between RBCs is considered. Based on the wall shear stress (WSS), NO production rate originated from endothelium was obtained by using a hyperbolic model. NO distribution inside the microvessel with multiple RBCs was computed by using immersed boundary finite difference method (IB-FDM). The result shows that a large (small) WSS exists at locations with a relatively wide(narrow) gap between the wall and cell. In terms of mass transfer, an increase of RBC membrane permeability leads to a decrease of NO concentration in the vessel and the surrounding endothelium significantly. In addition, with the increasing of hematocrit (Hct) value, NO concentration distribution in the whole vessel decreases both in the lumen and vascular wall. Finally, the thickness of RBCs-depleted layer gradually decreases with the weakened deformability of RBCs membrane, and the change degree of cell free layer (CFL) thickness decreases as the bending stiffness is relatively higher. Thus, when bending stiffness is higher, the NO concentration in vascular wall is reduced resulting from the thinner CFL.


Assuntos
Endotélio Vascular/metabolismo , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Microvasos/metabolismo , Modelos Cardiovasculares , Óxido Nítrico/sangue , Animais , Velocidade do Fluxo Sanguíneo , Deformação Eritrocítica , Humanos , Fluxo Sanguíneo Regional , Estresse Mecânico
5.
Biomech Model Mechanobiol ; 18(4): 1095-1109, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30840162

RESUMO

The effect of red blood cells and the undulation of the endothelium on the shear stress in the microvasculature is studied numerically using the lattice Boltzmann-immersed boundary method. The results demonstrate a significant effect of both the undulation of the endothelium and red blood cells on wall shear stress. Our results also reveal that morphological alterations of red blood cells, as occur in certain pathologies, can significantly affect the values of wall shear stress. The resulting fluctuations in wall shear stress greatly exceed the nominal values, emphasizing the importance of the particulate nature of blood as well as a more realistic description of vessel wall geometry in the study of hemodynamic forces. We find that within the channel widths investigated, which correspond to those found in the microvasculature, the inverse minimum distance normalized to the channel width between the red blood cell and the wall is predictive of the maximum wall shear stress observed in straight channels with a flowing red blood cell. We find that the maximum wall shear stress varies several factors more over a range of capillary numbers (dimensionless number relating strength of flow to membrane elasticity) and reduced areas (measure of deflation of the red blood cell) than the minimum wall shear stress. We see that waviness reduces variation in minimum and maximum shear stresses among different capillary and reduced areas.


Assuntos
Forma Celular , Endotélio Vascular/fisiologia , Eritrócitos/citologia , Microvasos , Estresse Mecânico
6.
Soft Matter ; 15(7): 1508-1521, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30672958

RESUMO

Active colloids self-organise into a variety of collective states, ranging from highly motile "molecules" to complex 2D structures. Using large-scale simulations, we show that hydrodynamic interactions, together with a gravity-like aligning field, lead to tunable self-assembly of active colloidal spheres near a surface. The observed structures depend on the hydrodynamic characteristics: particles driven at the front, pullers, form small chiral spinners consisting of two or three particles, whereas those driven at the rear, pushers, assemble into large dynamic aggregates. The rotational motion of the puller spinners, arises from spontaneous breaking of the internal chirality. Our results show that the fluid flow mediates chiral transfer between neighbouring spinners. Finally we show that the chirality of the individual spinners controls the topology of the self-assembly in solution: homochiral samples assemble into a hexagonally symmetric 2D crystal lattice while racemic mixtures show reduced hexatic order with diffusion-like dynamics.

7.
Biophys J ; 115(11): 2218-2229, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30447988

RESUMO

ATP is a major player as a signaling molecule in blood microcirculation. It is released by red blood cells (RBCs) when they are subjected to shear stresses large enough to induce a sufficient shape deformation. This prominent feature of chemical response to shear stress and RBC deformation constitutes an important link between vessel geometry, flow conditions, and the mechanical properties of RBCs, which are all contributing factors affecting the chemical signals in the process of vasomotor modulation of the precapillary vessel networks. Several in vitro experiments have reported on ATP release by RBCs due to mechanical stress. These studies have considered both intact RBCs as well as cells within which suspected pathways of ATP release have been inhibited. This has provided profound insights to help elucidate the basic governing key elements, yet how the ATP release process takes place in the (intermediate) microcirculation zone is not well understood. We propose here an analytical model of ATP release. The ATP concentration is coupled in a consistent way to RBC dynamics. The release of ATP, or the lack thereof, is assumed to depend on both the local shear stress and the shape change of the membrane. The full chemo-mechanical coupling problem is written in a lattice-Boltzmann formulation and solved numerically in different geometries (straight channels and bifurcations mimicking vessel networks) and under two kinds of imposed flows (shear and Poiseuille flows). Our model remarkably reproduces existing experimental results. It also pinpoints the major contribution of ATP release when cells traverse network bifurcations. This study may aid in further identifying the interplay between mechanical properties and chemical signaling processes involved in blood microcirculation.


Assuntos
Trifosfato de Adenosina/metabolismo , Simulação por Computador , Membrana Eritrocítica/fisiologia , Eritrócitos/fisiologia , Modelos Cardiovasculares , Estresse Mecânico , Velocidade do Fluxo Sanguíneo , Eritrócitos/metabolismo , Humanos
8.
Phys Rev Lett ; 120(26): 268102, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004752

RESUMO

Driven or active suspensions can display fascinating collective behavior, where coherent motions or structures arise on a scale much larger than that of the constituent particles. Here, we report numerical simulations and an analytical model revealing that deformable particles and, in particular, red blood cells (RBCs) assemble into regular patterns in a confined shear flow. The pattern wavelength concurs well with our experimental observations. The order is of a pure hydrodynamic and inertialess origin, and it emerges from a subtle interplay between (i) hydrodynamic repulsion by the bounding walls that drives deformable cells towards the channel midplane and (ii) intercellular hydrodynamic interactions that can be attractive or repulsive depending on cell-cell separation. Various crystal-like structures arise depending on the RBC concentration and confinement. Hardened RBCs in experiments and rigid particles in simulations remain disordered under the same conditions where deformable RBCs form regular patterns, highlighting the intimate link between particle deformability and the emergence of order.


Assuntos
Eritrócitos/química , Eritrócitos/citologia , Modelos Biológicos , Modelos Químicos , Animais , Humanos , Hidrodinâmica , Resistência ao Cisalhamento
9.
Eur Phys J E Soft Matter ; 41(3): 39, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29594924

RESUMO

Using lattice Boltzmann simulations we study the hydrodynamics of an active spherical particle near a no-slip wall. We develop a computational model for an active Janus particle, by considering different and independent mobilities on the two hemispheres and compare the behaviour to a standard squirmer model. We show that the topology of the far-field hydrodynamic nature of the active Janus particle is similar to the standard squirmer model, but in the near-field the hydrodynamics differ. In order to study how the near-field effects affect the interaction between the particle and a flat wall, we compare the behaviour of a Janus swimmer and a squirmer near a no-slip surface via extensive numerical simulations. Our results show generally a good agreement between these two models, but they reveal some key differences especially with low magnitudes of the squirming parameter [Formula: see text]. Notably the affinity of the particles to be trapped at a surface is increased for the active Janus particles when compared to standard squirmers. Finally, we find that when the particle is trapped on the surface, the velocity parallel to the surface exceeds the bulk swimming speed and scales linearly with [Formula: see text].

10.
Microvasc Res ; 105: 40-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26744089

RESUMO

Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer simulations and in vitro experiments reveal that the hematocrit (ϕ0) partition depends strongly on RBC deformability, as long as ϕ0<20% (within the normal range in microcirculation), and can even lead to complete deprivation of RBCs in a child branch. Furthermore, we discover a deviation from the Zweifach-Fung effect which states that the child branch with lower flow rate recruits less RBCs than the higher flow rate child branch. At small enough ϕ0, we get the inverse scenario, and the hematocrit in the lower flow rate child branch is even higher than in the parent vessel. We explain this result by an intricate up-stream RBC organization and we highlight the extreme dependence of RBC transport on geometrical and cell mechanical properties. These parameters can lead to unexpected behaviors with consequences on the microcirculatory function and oxygen delivery in healthy and pathological conditions.


Assuntos
Eritrócitos/metabolismo , Hematócrito , Hemoglobinas/metabolismo , Microcirculação , Técnicas Analíticas Microfluídicas , Microvasos/fisiologia , Modelos Anatômicos , Modelos Cardiovasculares , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Humanos , Microvasos/anatomia & histologia , Fluxo Sanguíneo Regional , Viscosidade
11.
IEEE Trans Nanobioscience ; 14(6): 660-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26011890

RESUMO

Deterministic lateral displacement (DLD) arrays containing shaped pillars have been found to be more effective in biomedical sample separation. This study aims to numerically investigate the interplay between particles and microfluidic arrays, and to find out the key factors in determining the critical size of a DLD device with shaped pillars. A new formula is thus proposed to estimate the critical size for spherical particle separation in this kind of new DLD microfluidic arrays. The simulation results show that both rectangular and I-shaped arrays have considerably smaller critical sizes. The ratio of sub-channel widths is also found to play an important role in reducing the critical sizes. This paves a valuable way toward designing high-performance DLD microfluidic arrays.


Assuntos
Biologia Computacional/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Simulação por Computador , Tamanho da Partícula
12.
Phys Rev Lett ; 112(23): 238304, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972235

RESUMO

Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η] = (η-η(0))/(η(0)ϕ) as a function of hematocrit ϕ (η(0) = solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.


Assuntos
Viscosidade Sanguínea/fisiologia , Microcirculação/fisiologia , Modelos Cardiovasculares , Vasos Sanguíneos/fisiologia , Eritrócitos/fisiologia , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...