Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2312134, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618938

RESUMO

Phase change materials (PCMs) present a dual thermal management functionality through intrinsic thermal energy storage (TES) capabilities while maintaining a constant temperature. However, the practical application of PCMs encounters challenges, primarily stemming from their low thermal conductivity and shape-stability issues. Despite significant progress in the development of solid-solid PCMs, which offer superior shape-stability compared to their solid-liquid counterparts, they compromise TES capacity. Herein, a universal phase engineering strategy is introduced to address these challenges. The approach involves compositing solid-liquid PCM with a particulate-based conductive matrix followed by surface reaction to form a solid-solid PCM shell, resulting in a core-shell composite with enhanced thermal conductivity, high thermal storage capacity, and optimal shape-stability. The core-shell structure designed in this manner not only encapsulates the energy-rich solid-liquid PCM core but also significantly enhances TES capacity by up to 52% compared to solid-solid PCM counterparts. The phase-engineered high-performance PCMs exhibit excellent thermal management capabilities by reducing battery cell temperature by 15 °C and demonstrating durable solar-thermal-electric power generation under cloudy or no sunshine conditions. This proposed strategy holds promise for extending to other functional PCMs, offering a compelling avenue for the development of high-performance PCMs for thermal energy applications.

2.
Adv Mater ; 36(25): e2314130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428436

RESUMO

Radiative cooling technology is well known for its subambient temperature cooling performance under sunlight radiation. However, the intrinsic maximum cooling power of radiative cooling limits the performance when the objects meet the thermal shock. Here, a dual-function strategy composed of radiative cooling and latent heat storage simultaneously enabling the efficient subambient cooling and high-efficiency thermal-shock resistance performance is proposed. The electrospinning and absorption-pressing methods are used to assemble the dual-function cooler. The high sunlight reflectivity and high mid-infrared emissivity of radiative film allow excellent subambient temperature of 5.1 °C. When subjected the thermal shock, the dual-function cooler demonstrates a pinning effect of huge temperature drop of 39 °C and stable low-temperature level by isothermal heat absorption compared with the traditional radiative cooler. The molten phase change materials provide the heat-time transfer effect by converting thermal-shock heat to the delayed preservation. This strategy paves a powerful way to protect the objects from thermal accumulation and high-temperature damage, expanding the applications of radiative cooling and latent heat storage technologies.

3.
Small Methods ; : e2301458, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326035

RESUMO

The high thermal storage density of phase change materials (PCMs) has attracted considerable attention in solar energy applications. However, the practicality of PCMs is often limited by the problems of leakage, poor solar-thermal conversion capability, and low thermal conductivity, resulting in low-efficiency solar energy storage. In this work, a new system of MXene-integrated solid-solid PCMs is presented as a promising solution for a solar-thermal energy storage and electric conversion system with high efficiency and energy density. The composite system's performance is enhanced by the intrinsic photo-thermal behavior of MXene and the heterogeneous phase transformation properties of PCM molecular chains. The optimal composites system has an impressive solar thermal energy storage efficiency of up to 94.5%, with an improved energy storage capacity of 149.5 J g-1 , even at a low MXene doping level of 5 wt.%. Additionally, the composite structure shows improved thermal conductivity and high thermal cycling stability. Furthermore, a proof-of-concept solar-thermal-electric conversion device is designed based on the optimized M-SSPCMs and commercial thermoelectric generators, which exhibit excellent energy conversion efficiency. The results of this study highlight the potential of the developed PCM composites in high-efficiency solar energy utilization for advanced photo-thermal systems.

4.
Int J Biol Macromol ; 222(Pt B): 3001-3013, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244531

RESUMO

The leakage issue and inferior heat conduction of organic phase change materials (PCMs) limit their actual applications. In the present study, cellulose nanofibril (CNF)-based foams were prepared as the porous scaffolds for polyethylene glycol (PEG) and paraffin wax (Pw) to prevent their leakage, and multiwalled carbon nanotubes (CNTs) were incorporated to improve the heat transfer performance. The prepared foams had low density (<67.3 kg/m3) and high porosity (>94.5 %). Selective chemical modifications of nanocellulose foams enhanced their shape-stability and compatibility with PCMs. The highly porous foam structure and favorable compatibility resulted in high PCM loading levels (93.63 % for PEG and 91.77 % for Pw) and negligible PCM leakage (<2 %). CNTs improved the heat transfer performance of PCMs, as evidenced by the improved thermal conductivities and boosted temperature rises during solar heating. Meanwhile, the composite PCMs exhibited improved thermal stability over the control. PEG-based composite PCM exhibited a phase change enthalpy of 143 kJ/kg with a melting temperature of 25.2 °C; Pw-based composite PCM exhibited a phase change enthalpy of 184 kJ/kg with a melting temperature of 53.4 °C. Novel PCM sandwich structures based on these composite PCMs and a thermoelectric generator were designed and displayed promising potential for solar energy harvesting and utilization.


Assuntos
Temperatura Alta , Nanotubos de Carbono , Celulose , Condutividade Térmica , Termodinâmica , Parafina/química , Aerossóis
5.
Carbohydr Polym ; 273: 118585, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560986

RESUMO

The leakage and low thermal conductivity of paraffin phase change material (PCM) must be addressed to achieve a more efficient energy storage process. In this study, cellulose nanofibril (CNF) foams were prepared as the porous support of paraffin to prevent its leakage, and multiwalled carbon nanotubes (CNTs) were incorporated in the foams to improve heat transfer performance. Treatment of CNF with methyltrimethoxysilane improved compatibility between the foams and paraffin. The prepared highly porous (porosity >96%) foams had paraffin absorption capacities exceeding 90%. The form-stable PCM composites displayed negligible paraffin leakage and had a compact structure. The prepared PCM composites had enhanced heat transfer performance, reasonable phase change properties and thermal stabilities. The enthalpy of the SCNF/CNT50-Pw PCM composite decreased by 6% after 100 melting/freezing cycles. Compared with pristine paraffin, the PCM composites exhibited superior form-stabilities and improved thermal properties, which suggested application in a solar-thermal-electricity energy harvesting and conversion system.

6.
Polymers (Basel) ; 13(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921733

RESUMO

The poor barrier properties and hygroscopic nature of cellulosic paper impede the wide application of cellulosic paper as a packaging material. Herein, a polyvinyl alcohol (PVA)-based polymer coating was used to improve the barrier performance of paper through its good ability to form a film. Alkyl ketene dimer (AKD) was used to enhance the water resistance. The effect of the absorptive characteristics of the base paper on the barrier properties was explored, and it was shown that surface-sized base paper provides a better barrier performance than unsized base paper. Nanoclay (Cloisite Na+) was used in the coating formulation to further enhance the barrier performance. The results show that the coating of PVA/AKD/nanoclay dispersion noticeably improved the barrier performance of the paper. The water vapor transmission rate of the base paper was 533 g/m2·day, and it decreased sharply to 1.3 g/m2·day after the application of a double coating because of the complete coverage of the base paper by the PVA-based polymer coating. The coated paper had excellent water resistance owing to its high water contact angle of around 100°. The grease resistance and mechanical properties of the base paper also improved after coating. This work may provide inspiration for improving the barrier properties of packaging paper through the selection of a suitable base paper and coating formulation.

7.
Polymers (Basel) ; 13(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672871

RESUMO

Coated paper with a porous coating layer may have enhanced light-scattering ability and thus favorable optical properties. However, the increased porosity of such a coating layer is likely to decrease the strength of the coated paper, thereby adversely affecting the quality of the paper in the printing and converting processes. In this research, polymer-stabilized (PS) latex was prepared and used as a cobinder for the pigment coating of the paper. The PS latex particles were colloidally stabilized by a 3:1 mixture of starch and polyvinyl alcohol. The influence of the PS latex cobinder on the viscosity, sedimentation, and consolidation of coating colors was investigated. In addition, the effect of the cobinder on the properties of coating layers, namely, their porosity and surface, optical, and tensile properties, was examined. The results revealed that the PS latex cobinder formed microstructures in the coating colors and affected their viscosity. The addition of PS latex also led to enhanced interactions between coating color components, which affected the consolidation of the coating color, resulting in the formation of dried coating layers with greater porosity and improved optical properties (i.e., higher brightness and opacity) relative to coatings without the PS latex cobinder. Furthermore, the addition of PS latex improved the tensile strength of the coating layers, which was attributable to the small size and the polymeric protective shell of the cobinder particles. Thus, these results show that this PS latex cobinder has the potential to be used for the production of high-quality coated paper products.

8.
Int J Biol Macromol ; 174: 402-412, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33529630

RESUMO

Salt hydrate phase change materials (PCMs) possess the challenge of supercooling, which must be addressed to allow more efficient energy storage and utilisation. In this work, cellulose nanofibril (CNF), a versatile biopolymer was used to support and disperse silver nanoparticles (AgNPs), and the synthesised CNF/AgNPs composite was used to improve the performance of sodium acetate trihydrate (SAT). Results showed that CNF dispersed the AgNPs uniformly and prevented their aggregation. Through the synergistic effect of 1% CNF/AgNPs and 2% sodium phosphate dibasic dodecahydrate, a low supercooling degree of 1.2 °C was achieved. Moreover, AgNPs were uniformly distributed in the prepared PCM composite. Differential scanning calorimetry results indicated that the prepared PCM@CNF/AgNPs 0.02 composite showed a similar melting point (57.4 °C) and enthalpy (269 kJ/kg), compared to those of pure SAT. Thermogravimetric analysis showed that the PCM composite did not lose all moisture until a heating temperature of 160 °C, showing improved thermal stability. The thermal conductivity of PCM@CNF/AgNPs 0.02 composite was 31.6% higher than that of SAT. The enthalpy of this composite decreased only around 2% after 100 melting/freezing cycles, showing satisfying thermal reliability. This composite can therefore be used to fabricate high-performance TES systems with negligible supercooling and improved thermal properties.


Assuntos
Celulose/química , Nanopartículas Metálicas/química , Nanocompostos/química , Prata/química , Varredura Diferencial de Calorimetria , Teste de Materiais , Nanofibras/química , Nanopartículas/química , Acetato de Sódio/química , Condutividade Térmica
9.
ACS Omega ; 5(16): 9291-9300, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32363279

RESUMO

Polymer latexes have long been used as coating binders by various branches of industry due to their capacity to adhere coating components and increase the strength of the dried final coatings. In addition, these latexes have been known to affect the rheology of coating dispersions. Currently, emulsion polymerization is the most widely used method of producing polymer latexes. While the stability of these latexes is primarily provided by electrostatic repulsion between surfactants, this property also causes foaming problems during coating processes. In this research, these problems were addressed by preparing polymer-stabilized (PS) latexes that contained different concentrations of acrylic acid. Steric protection of the latexes was provided by a protective shell consisting of starch and poly(vinyl alcohol) (PVA). The viscosity, particle size, ζ-potential, and viscoelastic behavior of the prepared latexes were investigated as a function of pH, and their surface tension and foaming tendencies were evaluated. The latexes were applied as coating cobinders in calcium carbonate and clay coating dispersions, and the viscoelastic properties, surface tensions, and foaming tendencies of these mixtures were studied. The presence of acrylic acid monomers was found to be an important factor affecting the viscosity, particle size, and ζ-potential of the PS latexes prepared in this work, which were further found to generate less foam than comparable emulsion-polymerized latexes. Finally, coating color viscoelastic properties were modified via the partial substitution of styrene-butadiene (S/B) latexes with PS latexes.

10.
Carbohydr Polym ; 135: 234-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26453873

RESUMO

The aim of this study was to investigate the oxidation of chitooligomer by a laccase-TEMPO system which had not previously been examined. Chitooligomer was treated with laccase and TEMPO in order to evaluate the potential of a laccase-TEMPO system to improve the moisture absorption, moisture retention, and antioxidant abilities of chitooligomer. Chitooligomer was prepared by degradation of high molecular weight chitosan with hydrogen peroxide followed by oxidation using a laccase-TEMPO system. (13)C NMR and carboxylate ion content detection results indicated that the laccase-TEMPO system could selectively oxidise the C6 hydroxyl group of the chitooligomer into carboxyl group; molecular weight distribution changes suggest that the structure of the oxidised product had changed and the molecular size and molecular weight decreased with the molecules in aqueous solution having a compact structure. Oxidation of chitooligomer by a laccase-TEMPO system resulted in a significant improvement in the moisture absorption, moisture retention and antioxidant abilities. The oxidised product has potential application values in the pharmaceutical and cosmetics industries.


Assuntos
Quitosana/química , Óxidos N-Cíclicos/química , Lacase/química , Antioxidantes/química , Benzotiazóis/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxirredução , Ácidos Sulfônicos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...