Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241717

RESUMO

This paper presents the results of an experimental study on the heat transfer and pressure drop characteristics of a novel spiral plate mini-channel gas cooler designed for use with supercritical CO2. The CO2 channel of the mini-channel spiral plate gas cooler has a circular spiral cross-section with a radius of 1 mm, while the water channel has an elliptical cross-section spiral channel with a long axis of 2.5 mm and a short axis of 1.3 mm. The results show that increasing the mass flux of CO2 can effectively enhance the overall heat transfer coefficient when the water side mass flow rate is 0.175 kg·s-1 and the CO2 side pressure is 7.9 MPa. Increasing the inlet water temperature can also improve the overall heat transfer coefficient. The overall heat transfer coefficient is higher when the gas cooler is vertically oriented compared to horizontally oriented. A Matlab program was developed to verify that the correlation based on Zhang's method has the highest accuracy. The study found a suitable heat transfer correlation for the new spiral plate mini-channel gas cooler through experimental research, which can provide a reference for future designs.

2.
Microorganisms ; 8(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759862

RESUMO

Phosphoribulokinase (PrkA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been proposed to create a heterologous Rubisco-based engineered pathway in Escherichia coli for in situ CO2 recycling. While the feasibility of a Rubisco-based engineered pathway has been shown, heterologous expressions of PrkA and Rubisco also induced physiological responses in E. coli that may compete with CO2 recycling. In this study, the metabolic shifts caused by PrkA and Rubisco were investigated in recombinant strains where ppc and pta genes (encodes phosphoenolpyruvate carboxylase and phosphate acetyltransferase, respectively) were deleted from E. coli MZLF (E. coli BL21(DE3) Δzwf, ΔldhA, Δfrd). It has been shown that the demand for ATP created by the expression of PrkA significantly enhanced the glucose consumptions of E. coli CC (MZLF Δppc) and E. coli CA (MZLF Δppc, Δpta). The accompanying metabolic shift is suggested to be the mgsA route (the methylglyoxal pathway) which results in the lactate production for reaching the redox balance. The overexpression of Rubisco not only enhanced glucose consumption but also bacterial growth. Instead of the mgsA route, the overproduction of the reducing power was balanced by the ethanol production. It is suggested that Rubisco induces a high demand for acetyl-CoA which is subsequently used by the glyoxylate shunt. Therefore, Rubisco can enhance bacterial growth. This study suggests that responses induced by the expression of PrkA and Rubisco will reach a new energy balance profile inside the cell. The new profile results in a new distribution of the carbon flow and thus carbons cannot be majorly directed to the Rubisco-based engineered pathway.

3.
Metab Eng ; 47: 445-452, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29704653

RESUMO

Rubisco-based engineered Escherichia coli MZLFB (E. coli BL21(DE3) Δzwf, Δldh, Δfrd) containing heterologous phosphoribulokinase (Prk) and Ribulose-1,5- bisphosphate carboxylase/oxygenase (Rubisco) was constructed for the mixotrophic growth. However, in situ CO2 recycling was hindered by clogs of pyruvate during glucose metabolism, which consequently resulted in an insufficient regeneration of NAD+ through the pflB-mediated ethanol production. Recombinant plasmid pLOI295 (encodes pyruvate decarboxylase and alcohol dehydrogenase II, referred to as the Pdc-based carbon tap valve (CTV) for convenience) was introduced into E. coli MZLFB + CTV to bypass the pflB-mediated ethanol production. Results show that while the C-2/C-1 ratio (i.e., the molar ratio of ethanol and acetate to formate and total CO2) for parental strain MZLFB was 1.0 ±â€¯0.1, the C-2/C-1 for MZLFB + CTV increased to 1.6 ±â€¯0.1. This indicates that the Pdc-based CTV enhanced the performance of in situ CO2 recycling. By simultaneously utilizing glucose and CO2, the fermentation product yield of MZLFB + CTV exceeded the normal theoretical yield and reached 2.2 ±â€¯0.0 (mol/mol). In silico analysis shows that 61% of the glucose consumption went through the Rubisco-based engineered pathway when the CTV was equipped. Also shown are the average CO2 consumption rate of 55.3 mg L-1·h-1 and an average ethanol production rate of 144.8 mg L-1·h-1. The conversion of CO2 to ethanol through the Rubisco-based engineered pathway and the Pdc-based carbon tap valve is important for mixotrophic growth, since these two modules serve as the energy sink to achieve intracellular energy balance. Also, during mixotrophic growth, ATP production from a certain percentage (39% in this study) of the EMP pathway activity is needed for mixotrophic growth.


Assuntos
Dióxido de Carbono/metabolismo , Escherichia coli , Microrganismos Geneticamente Modificados , Modelos Biológicos , Ribulose-Bifosfato Carboxilase , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
4.
Nat Commun ; 9(1): 47, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298979

RESUMO

SnSe is a promising thermoelectric material with record-breaking figure of merit. However, to date a comprehensive understanding of the electronic structure and most critically, the self-hole-doping mechanism in SnSe is still absent. Here we report the highly anisotropic electronic structure of SnSe investigated by angle-resolved photoemission spectroscopy, in which a unique pudding-mould-shaped valence band with quasi-linear energy dispersion is revealed. We prove that p-type doping in SnSe is extrinsically controlled by local phase segregation of SnSe2 microdomains via interfacial charge transferring. The multivalley nature of the pudding-mould band is manifested in quantum transport by crystallographic axis-dependent weak localisation and exotic non-saturating negative magnetoresistance. Strikingly, quantum oscillations also reveal 3D Fermi surface with unusual interlayer coupling strength in p-SnSe, in which individual monolayers are interwoven by peculiar point dislocation defects. Our results suggest that defect engineering may provide versatile routes in improving the thermoelectric performance of the SnSe family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...