Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798444

RESUMO

On-target off-tumour toxicity limits the anticancer applicability of chimaeric antigen receptor (CAR) T cells. Here we show that the tumour-targeting specificity and activity of T cells with a CAR consisting of an antibody with a lysine residue that catalytically forms a reversible covalent bond with a 1,3-diketone hapten can be regulated by the concentration of a small-molecule adapter. This adapter selectively binds to the hapten and to a chosen tumour antigen via a small-molecule binder identified via a DNA-encoded library. The adapter therefore controls the formation of a covalent bond between the catalytic antibody and the hapten, as well as the tethering of the CAR T cells to the tumour cells, and hence the cytotoxicity and specificity of the cytotoxic T cells, as we show in vitro and in mice with prostate cancer xenografts. Such small-molecule switches of T-cell cytotoxicity and specificity via an antigen-independent 'universal' CAR may enhance the control and safety profile of CAR-based cellular immunotherapies.

2.
ACS Cent Sci ; 9(2): 217-227, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844503

RESUMO

The 3C-like protease (3CLpro) is an essential enzyme for the replication of SARS-CoV-2 and other coronaviruses and thus is a target for coronavirus drug discovery. Nearly all inhibitors of coronavirus 3CLpro reported so far are covalent inhibitors. Here, we report the development of specific, noncovalent inhibitors of 3CLpro. The most potent one, WU-04, effectively blocks SARS-CoV-2 replications in human cells with EC50 values in the 10-nM range. WU-04 also inhibits the 3CLpro of SARS-CoV and MERS-CoV with high potency, indicating that it is a pan-inhibitor of coronavirus 3CLpro. WU-04 showed anti-SARS-CoV-2 activity similar to that of PF-07321332 (Nirmatrelvir) in K18-hACE2 mice when the same dose was administered orally. Thus, WU-04 is a promising drug candidate for coronavirus treatment.

3.
SLAS Discov ; 27(2): 79-85, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063690

RESUMO

Covalent inhibitors targeting the main protease (Mpro, or 3CLpro) of SARS-CoV-2 have shown promise in preclinical investigations. Herein, we report the discovery of two new series of molecules that irreversibly bind to SARS-CoV-2 Mpro. These acrylamide containing molecules were discovered using our covalent DNA-encoded library (DEL) screening platform. Following selection against SARS-CoV-2 Mpro, off-DNA compounds were synthesized and investigated to determine their inhibitory effects, the nature of their binding, and to generate preliminary structure-activity relationships. LC-MS analysis indicates a 1:1 (covalent) binding stoichiometry between our hit molecules and SARS-CoV-2 Mpro. Fluorescent staining assay for covalent binding in the presence of cell lysate suggests reasonable selectivity for SARS-CoV-2 Mpro. And lastly, inhibition of enzymatic activity was also observed against a panel of 3CLpro enzymes from different coronavirus strains, with IC50 values ranging from inactive to single digit micromolar. Our results indicate that DEL selection is a useful approach for identifying covalent inhibitors of cysteine proteases.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , DNA/química , Descoberta de Drogas/métodos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Linhagem Celular , Estudos de Viabilidade , Humanos , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade
4.
Org Lett ; 21(2): 448-452, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30615462

RESUMO

A conceptually novel sulfoxonium metathesis reaction between TMSOI and cost-effective DMSO- d6 is developed for the efficient generation of a new trideuteromethylation reagent TDMSOI. The new reagent TDMSOI is produced highly efficiently by simply heating a mixture of TMSOI and DMSO- d6 and directly used for subsequent trideuteromethylation in a "one-pot" operation. The preparative power of the new versatile reagent and the "one-pot" protocol is demonstrated by its use to install the -CD3 moiety into broad functionalities including phenols, thiophenols, acidic amines, and enolizable methylene units in high yield and at a useful level of deuteration (>87% D).


Assuntos
Deutério/química , Indicadores e Reagentes/química , Fenóis/química , Compostos de Sulfidrila/química
5.
Nat Catal ; 2(12): 1071-1077, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33791590

RESUMO

The recent surge in applications of deuterated pharmaceutical agents has created an urgent demand for synthetic methods that efficiently generate deuterated building blocks. Here we show that N-heterocyclic carbenes (NHC) promote a reversible hydrogen-deuterium exchange (HDE) reaction with simple aldehydes, which leads to a practical approach to synthetically valuable C-1 deuterated aldehydes. The reactivity of the well-established NHC catalysed formation of Breslow intermediates from aldehydes is reengineered to overcome the overwhelmingly kinetically favorable, irreversible benzoin condensation reaction and achieve the critical reversibility to drive the formation of desired deuterated products when an excess of D2O is employed. Notably, this operationally simple and cost-effective protocol serves as a general and truly practical approach to all types of 1-D-aldehydes including aryl, -alkyl and -alkenyl aldehydes and enables chemoselective late-stage deuterium incorporation into complex, native therapeutic agents and natural products with uniformly high levels (>95%) of deuterium incorporation for a total of 104 substrates tested.

6.
Neurochem Int ; 110: 38-48, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28887094

RESUMO

There is a pressing need of developing approaches for delayed post-stroke therapy for patients who fail to receive thrombolysis within the narrow time window. Neuroprotection of Salvianolic Acids for Injection (SAFI) for cerebral ischemia-reperfusion injury in acute phase has been well documented. The current study was to determine the influence of SAFI at the subacute phase after stroke in mice, and to elucidate the underlying mechanisms. Adult male C57BL/6 mice were subjected to permanent occlusion of the distal middle cerebral artery (dMCAO), followed by daily intraperitoneal injection of SAFI 24 h after stroke for 14 days. Motor behavior was measured by neurological function evaluations weekly, and proliferation, migration, survival and differentiation of neural progenitor cells (NPCs) were examined with immunohistochemistry. Sonic hedgehog (Shh) inhibitor cyclopamine (CYC) was injected to determine the involvement of Shh pathway in the therapeutic effects of SAFI. The results showed that SAFI led to dramatic brain functional improvement, elevated NPCs proliferation, and prompted long-term survival of newborn neurons in the subventricular zone (SVZ). Up-regulation of Shh, Ptch and nuclear translocation of Gli1 were observed in the peri-infarct region, accompanied with robust production of Brain derived neurotrophic factor (BDNF) and Nerve growth factor (NGF). Simultaneous administration with CYC strikingly attenuated the beneficial outcomes of SAFI as well as abolished SAFI induced BDNF and NGF production. Collectively, our study demonstrated SAFI significantly promoted long-term functional recovery and neurogenesis, which might be dependent on Shh signaling mediated BDNF and NGF production. Therefore, SAFI might serve as a potential clinically translatable therapy during recovery stage after stroke.


Assuntos
Alcenos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Proteínas Hedgehog/antagonistas & inibidores , Neurogênese/efeitos dos fármacos , Polifenóis/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Proteínas Hedgehog/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Distribuição Aleatória , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo , Alcaloides de Veratrum/administração & dosagem
7.
J Neurochem ; 143(1): 87-99, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28771727

RESUMO

Post-stroke angiogenesis facilitates neurovascular remodeling process and promotes neurological recovery. Proangiogenic effects of Salvianolic acids (Sals) have been reported in various ischemic disorders. However, the underlying mechanisms are still poorly understood. Previous studies of our laboratory have demonstrated that activating Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway is involved in the protection against cerebral ischemia/reperfusion injury. In this study, we investigated the impacts of Sals on angiogenesis and long-term neurological recovery after ischemic stroke as well as the potential mechanisms. Male mice subjected to permanent distal middle cerebral artery occlusion were administrated with Sals, 5-bromo-2'-deoxyuridine, and JAK2 inhibitor AG490 once daily from day 1 to day 14 after distal middle cerebral artery occlusion. Compared with the control group, Sals treatment significantly improved neurological recovery at day 14 and 28 after ischemic stroke. Sals enhanced post-stroke angiogenesis, pericytes and astrocytic endfeet covered ratio in the peri-infarct area. The JAK2/STAT3 signaling pathway was activated by Sals in the angiogenesis process, and inhibition of JAK2/STAT3 signaling blocked the effects of Sals on post-stroke angiogenesis and neurological recovery as well as abolished the mediation of proangiogenic factors. In summary, these data suggest that Sals administration enhances cerebral angiogenesis and promotes neurological recovery after ischemic stroke, mediated by the activation of JAK2/STAT3 signaling pathway.


Assuntos
Alcenos/farmacologia , Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Janus Quinase 2/metabolismo , Polifenóis/farmacologia , Fator de Transcrição STAT3/metabolismo , Acidente Vascular Cerebral/metabolismo , Alcenos/uso terapêutico , Animais , Isquemia Encefálica/tratamento farmacológico , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polifenóis/uso terapêutico , Distribuição Aleatória , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico
8.
Acta Pharm Sin B ; 5(5): 419-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26579472

RESUMO

Influenza A virus is the major cause of seasonal or pandemic flu worldwide. Two main treatment strategies-vaccination and small molecule anti-influenza drugs are currently available. As an effective vaccine usually takes at least 6 months to develop, anti-influenza small molecule drugs are more effective for the first line of protection against the virus during an epidemic outbreak, especially in the early stage. Two major classes of anti-influenza drugs currently available are admantane-based M2 protein blockers (amantadine and rimantadine) and neuraminidase (NA) inhibitors (oseltamivir, zanamivir, and peramivir). However, the continuous evolvement of influenza A virus and the rapid emergence of resistance to current drugs, particularly to amantadine, rimantadine, and oseltamivir, have raised an urgent need for developing new anti-influenza drugs against resistant forms of influenza A virus. In this review, we first give a brief introduction of the molecular mechanisms behind resistance, and then discuss new strategies in small-molecule drug development to overcome influenza A virus resistance targeting mutant M2 proteins and neuraminidases, and other viral proteins not associated with current drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...