Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Rev Esp Enferm Dig ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767035

RESUMO

A 69-year-old woman was diagnosed with a duodenal adenoma near major duodenal papilla during cancer screening examination (Figure 1A). Therefore, endoscopic mucosal resection (EMR) was proposed to remove the duodenal lesion. Unfortunately, satisfactory visualization of the duodenal lesion was not obtained during gastroscopic operation. Unexpectedly, duodenoscopy provided optimal visualization of the duodenal lesion. Consequently, the "sandwich method" using duodenoscopy-gastroscopy-duodenoscopy was successfully performed to remove the challenging duodenal lesion. Firstly, the duodenoscopy was used to create a submucosal bleb through injecting saline containing 0.3 % indigo carmine. Subsequently, the gastroscopy with a transparent capwas used to remove the duodenal lesion with en bloc resection. Then, the duodenoscopy was reused to close the mucosal defect. Finally, pathologic examination showed a tubule-villous adenoma. The patient was recovered uneventfully, and discharged 2 days later.

2.
Microbes Infect ; : 105332, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537770

RESUMO

BACKGROUND: Little knowledge of antigen existence in the pulmonary tuberculosis (PTB) patient serum impeded its development in antigen detection technology, despite its considerable potential. METHODS: Human ligand proteins and their adsorbent Mycobacterium tuberculosis (M.tb) proteins in the serum of PTB patients were identified using human protein chip (HuProt™) and LC-MS/MS, successively. The monoclonal antibody of ligand proteins, C5orf24, and polyclonal antibody of 9 M.tb proteins were prepared on mice and rabbits which were used to develop a novel enzyme-linked ligand-sorbent assay (ELLSA). The 412 volunteers were divided into the PTB group (n = 250) and the healthy control (n = 162). The PTB group was further divided into ATB (n = 131), LTBI (n = 18), Clinical diagnosis (n = 18), and Suspected (n = 73). All samples were tested by ELLSA to evaluate the diagnostic performance of ELLSA in PTB patients. RESULTS: Nine ligand proteins specific to PTB patients were identified on chips, with Chromosome 5 Open Reading Frame 24 (C5orf24) and kinocilin (KNCN) showing significantly higher signals. Proteomic analysis of the C5orf24-and KNCN-adsorbent protein complexes revealed 10 and 10 of the M.tb proteins, respectively. According to the composition reference of standard, the ELLSA based on C5orf24 ligand demonstrated a higher sensitivity of 69.6% and specificity of 90.18% in ATB patients and had a sensitivity of 64.22% in bacterial negative pulmonary tuberculosis, whereas the sensitivity of MGIT 960 and Xpert M.tb/RIF were 0%, respectively. CONCLUSIONS: M.tb proteins in serum can be enriched by ligand proteins and detected by ELLSA which proved to have excellent diagnostic performance for PTB.

3.
CNS Neurosci Ther ; 30(3): e14677, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38497529

RESUMO

BACKGROUND: Exosomes are vesicles secreted by all types of mammalian cells. They are characterized by a double-layered lipid membrane structure. They serve as carriers for a plethora of signal molecules, including DNA, RNA, proteins, and lipids. Their unique capability of effortlessly crossing the blood-brain barrier underscores their critical role in the progression of various neurological disorders. This includes, but is not limited to, diseases such as Alzheimer's, Parkinson's, and ischemic stroke. Establishing stable and mature methods for isolating exosomes is a prerequisite for the study of exosomes and their biomedical significance. The extraction technologies of exosomes include differential centrifugation, density gradient centrifugation, size exclusion chromatography, ultrafiltration, polymer coprecipitation, immunoaffinity capture, microfluidic, and so forth. Each extraction technology has its own advantages and disadvantages, and the extraction standards of exosomes have not been unified internationally. AIMS: This review aimed to showcase the recent advancements in exosome isolation techniques and thoroughly compare the advantages and disadvantages of different methods. Furthermore, the significant research progress made in using exosomes for diagnosing and treating central nervous system (CNS) diseases has been emphasized. CONCLUSION: The varying isolation methods result in differences in the concentration, purity, and size of exosomes. The efficient separation of exosomes facilitates their widespread application, particularly in the diagnosis and treatment of CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Exossomos , Humanos , Exossomos/metabolismo , Proteínas/metabolismo , Doenças do Sistema Nervoso Central/terapia , Doenças do Sistema Nervoso Central/metabolismo
4.
Nat Commun ; 15(1): 1806, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418450

RESUMO

AcrIIA15 is an anti-CRISPR (Acr) protein that inhibits Staphylococcus aureus Cas9 (SaCas9). Although previous studies suggested it has dual functions, the structural and biochemical basis for its two activities remains unclear. Here, we determined the cryo-EM structure of AcrIIA15 in complex with SaCas9-sgRNA to reveal the inhibitory mechanism of the Acr's C-terminal domain (CTD) in mimicking dsDNA to block protospacer adjacent motif (PAM) recognition. For the N-terminal domain (NTD), our crystal structures of the AcrIIA15-promoter DNA show that AcrIIA15 dimerizes through its NTD to recognize double-stranded (ds) DNA. Further, AcrIIA15 can simultaneously bind to both SaCas9-sgRNA and promoter DNA, creating a supercomplex of two Cas9s bound to two CTDs converging on a dimer of the NTD bound to a dsDNA. These findings shed light on AcrIIA15's inhibitory mechanisms and its autoregulation of transcription, enhancing our understanding of phage-host interactions and CRISPR defense.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , DNA/metabolismo , Staphylococcus aureus/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo
5.
Rev Esp Enferm Dig ; 116(1): 55-56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37073689

RESUMO

Brunner's gland adenoma (BGA), also known as Brunneroma or polypoid hamartoma, is a rare benign duodenal tumor that proliferates from Brunner's glands of the duodenum. They are usually asymptomatic and discovered by chance during endoscopy. Some giant lesions can sometimes present with chronic abdominal pain, nausea, vomiting, and anemia, including gastrointestinal bleeding and obstructive symptoms, and need to be resected by surgery or endoscopy. Here we report a giant BGA that was easily and safely removed by Endoloop pre-ligation assisted resection.


Assuntos
Adenoma , Glândulas Duodenais , Neoplasias Duodenais , Humanos , Neoplasias Duodenais/diagnóstico por imagem , Neoplasias Duodenais/cirurgia , Neoplasias Duodenais/patologia , Glândulas Duodenais/diagnóstico por imagem , Glândulas Duodenais/cirurgia , Glândulas Duodenais/patologia , Duodeno/patologia , Endoscopia , Adenoma/diagnóstico por imagem , Adenoma/cirurgia , Adenoma/patologia
6.
Microbes Infect ; 26(1-2): 105239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37863312

RESUMO

Oxidative stress and iron metabolism are essential for Mycobacterium tuberculosis (M.tb) survival in host cells. The efflux pump Rv1258c belongs to the major facilitator superfamily (MFS) and can actively pump drugs to promote certain drug resistance in M.tb. In this study, we compared H37RvΔRv1258c with wild-type (WT) M.tb H37Rv. The qRT-PCR results suggested that Rv1258c is potentially involved in the iron metabolic pathway by regulating the expression of ESX-3, which is required for iron uptake. Protein-Protein Affinity Predictor (PPA-Pred2) and the artificial intelligence program AlphaFold 2 were used for prediction and showed that Rv1258c has direct interactions with PPE4 and EccD3 but weak interactions with EccB3. This was further determined via protein-protein interaction analysis of the yeast two-hybrid expression system. By comparing mutant H37RvΔRv1258c strains with WT strains, we discovered that the absence of Rv1258c led to elevated intracellular H+ potential and NAD+/NADH ratios in M.tb, thereby resulting in oxidative stress. We hypothesize that the efflux pump Rv1258c not only has the function of regulating drug resistance in M.tb but also has a novel function in activating oxidative stress and regulating ESX-3-associated iron metabolism in M.tb.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ferro/metabolismo , Inteligência Artificial , Estresse Oxidativo , Redes e Vias Metabólicas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
J Hazard Mater ; 465: 133118, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101017

RESUMO

Cadmium (Cd) contamination in agricultural soil is a global concern for soil health and food sustainability because it can cause Cd accumulation in cereal grains. An in-situ stabilizing technology (using organic amendments) has been widely used for Cd remediation in arable lands. Therefore, the current study examined the influence of vermicompost (VC) on soil biochemical traits, bacterial community diversity and composition, Cd uptake and accumulation in rice plants and grain yield in a Cd-contaminated soil during the late growing season in 2022. Different doses of VC (i.e., V1 = 0 t ha-1, V2 = 3 t ha-1 and V3 = 6 t ha-1) and two concentrations of Cd (i.e., Cd1 = 0 and Cd2 = 50 mg Cd Kg-1 were used. We performed high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize soil bacterial communities. The addition of VC considerably affected the diversity and composition of the soil bacterial community; and increased the relative abundance of phyla Chloroflexi, Proteobacteria, Acidobacteriota, Plantomycetota, Gemmatimonadota, Patescibacteria and Firmicute. In addition, VC application, particularly High VC treatment, exhibited the highest bacterial diversity and richness (i.e., Simpson, Shannon, ACE, and Chao 1 indexes) of all treatments. Similarly, the VC application increased the soil chemical traits, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), total potassium (TK), total phosphorous (TP) and enzyme activities (i.e., acid phosphatase, catalase, urease and invertase) compared to non-VC treated soil under Cd stress. The average increase in SOC, TN, AN, TK and TP were 5.75%, 41.15%, 18.51%, 12.31%, 25.45% and 29.67%, respectively, in the High VC treatment (Pos-Cd + VC3) compared with Cd stressed soil. Redundancy analysis revealed that the leading bacterial phyla were associated with SOC, AN, TN, TP and pH, although the relative abundance of Firmicutes, Proteobacteria, Bacteroidata, and Acidobacteria on a phylum basis and Actinobacteria, Gammaproteobacteria and Myxococcia on a class basis, were highly correlated with soil environmental factors. Moreover, the VC application counteracted the adverse effects of Cd on plants and significantly reduced the Cd uptake and accumulation in rice organs, such as roots, stem + leaves and grain under Cd stress conditions. Similarly, applying VC significantly increased the fragrant rice grain yield and yield traits under Cd toxicity. The correlation analysis showed that the increased soil quantities traits were crucial in obtaining high rice grain yield. Generally, the findings of this research demonstrate that the application of VC in paddy fields could be useful for growers in Southern China by sustainably enhancing soil functionality and crop production.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo/química , Oryza/química , Carbono/análise , Bactérias , Acidobacteria , Proteobactérias , Grão Comestível/química , Fósforo/análise , Nitrogênio/análise , China , Poluentes do Solo/análise
9.
Microorganisms ; 11(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37894158

RESUMO

BACKGROUND: Leucine-rich repeat-containing protein-25 (LRRC25) can degrade the ISG15 gene in virus-infected cells and prevent overactivation of the type Ⅰ IFN pathway. However, the role of LRRC25 in bacterial infection is still unclear. In this pursuit, the present study aimed to explore the regulatory role and mechanism of LRRC25 in microglia infected with Mycobacterium tuberculosis in a mouse model. METHODS: Q-PCR, WB, and cell immunofluorescence were employed to observe the change in LRRC25 in BV2 cells infected by H37Rv. Additionally, siRNA was designed to target the LRRC25 to inhibit its expression in BV2 cells. Flow cytometry and laser confocal imaging were used to observe the infection of BV2 cells after LRRC25 silencing. Q-PCR and ELISA were used to determine the changes in IFN-γ and ISG15 in the culture supernatant of each group. RESULTS: Following H37Rv infection, it was observed that the expression of LRRC25 was upregulated. Upon silencing LRRC25, the proportion of BV2 cells infected by H37Rv decreased significantly. ELISA analysis showed that IFN-γ and ISG15 levels in cell culture supernatant decreased after H37Rv infection, while they significantly increased after LRRC25 silencing. CONCLUSIONS: This study provides evidence that LRRC25 is the key negative regulator of microglial anti-Mtb immunity. It exerts its function by degrading free ISG15 and inhibiting the secretion of IFN-γ, thereby improving the anti-Mtb immunity of BV2 cells.

10.
J Med Chem ; 66(21): 14609-14622, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37861443

RESUMO

Glioblastoma is the most common brain tumor, with high recurrence and low survival rates. An integrative bioinformatics analysis demonstrated that anaplastic lymphoma kinase (ALK) is a promising therapeutic target for glioblastoma. We designed and synthesized a series of 3-(arylmethylene)indole derivatives, which were further evaluated for antiproliferative activity using glioma cell lines. Among them, compound 4a significantly inhibited the viability of glioblastoma cells. With favorable pharmacokinetic characteristics and blood-brain barrier permeability, 4a improved the survival rate and inhibited the growth of orthotopic glioblastoma. The Phospho-Totum system revealed that ALK was a potential target for the antiglioblastoma activity of 4a. Further experiments indicated that 4a might be a novel ALK modulator, which interacted with the extracellular ligand-binding domain of ALK, thus selectively induced ERK-mediated autophagy and apoptosis. Our findings provide an alternative ALK-based targeting strategy and a new drug candidate for glioblastoma therapy.


Assuntos
Glioblastoma , Glioma , Humanos , Quinase do Linfoma Anaplásico , Receptores Proteína Tirosina Quinases , Glioblastoma/patologia , Indóis/farmacologia , Indóis/uso terapêutico , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células
11.
Dalton Trans ; 52(44): 16085-16102, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37814810

RESUMO

Metal-organic frameworks (MOFs) have received extensive attention in tumor therapy because of their advantages, including large specific surface area, regular pore size, adjustable shape, and facile functionalization. MOFs are porous materials formed by the coordination bonding of metal clusters and organic ligands. This review summarized the most recent advancements in tumor treatment based on nMOFs. First, we discuss the classification of MOFs, which primarily include the series of isoreticular MOF (IRMOF), zeolitic imidazolate framework (ZIF), coordination pillared-layer (CPL), Materials of Institute Lavoisier (MIL), porous coordination network (PCN), University of Oslo (UiO) and Biological metal-organic frameworks (BioMOFs). Then, we discuss the use of nMOFs in antitumor therapy, including drug delivery strategies, photodynamic therapy (PDT), photothermal therapy (PTT), and combination therapy. Finally, the obstacles and opportunities in nMOFs are discussed.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
12.
Proc Natl Acad Sci U S A ; 120(31): e2303675120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494395

RESUMO

Anti-CRISPR (Acr) proteins are encoded by phages and other mobile genetic elements and inhibit host CRISPR-Cas immunity using versatile strategies. AcrIIC4 is a broad-spectrum Acr that inhibits the type II-C CRISPR-Cas9 system in several species by an unknown mechanism. Here, we determined a series of structures of Haemophilus parainfluenzae Cas9 (HpaCas9)-sgRNA in complex with AcrIIC4 and/or target DNA, as well as the crystal structure of AcrIIC4 alone. We found that AcrIIC4 resides in the crevice between the REC1 and REC2 domains of HpaCas9, where its extensive interactions restrict the mobility of the REC2 domain and prevent the unwinding of target double-stranded (ds) DNA at the PAM-distal end. Therefore, the full-length guide RNA:target DNA heteroduplex fails to form in the presence of AcrIIC4, preventing Cas9 nuclease activation. Altogether, our structural and biochemical studies illuminate a unique Acr mechanism that allows DNA binding to the Cas9 effector complex but blocks its cleavage by preventing R-loop formation, a key step supporting DNA cleavage by Cas9.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Estruturas R-Loop , RNA Guia de Sistemas CRISPR-Cas , DNA/metabolismo , Bacteriófagos/genética , Edição de Genes
13.
Metabolites ; 13(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37367921

RESUMO

Cadmium (Cd) is a potentially hazardous element with significant biological toxicity, negatively affecting plant growth and physio-biochemical metabolism. Thus, it is necessary to examine practical and eco-friendly approaches to reduce Cd toxicity. Titanium dioxide nanoparticles (TiO2-NPs) are growth regulators that help in nutrient uptake and improve plant defense systems against abiotic and biological stress. A pot experiment was performed in the late rice-growing season (July-November) 2022 to explore the role of TiO2-NPs in relieving Cd toxicity on leaf physiological activity, biochemical attributes, and plant antioxidant defense systems of two different fragrant rice cultivars, i.e., Xiangyaxiangzhan (XGZ) and Meixiangzhan-2 (MXZ-2). Both cultivars were cultivated under normal and Cd-stress conditions. Different doses of TiO2-NPs with and without Cd-stress conditions were studied. The treatment combinations were: Cd-, 0 mg/kg CdCl2·2.5 H2O; Cd+, 50 mg/kg CdCl2·2.5 H2O; Cd + NP1, 50 mg/kg Cd + 50 TiO2-NPs mg/L; Cd + NP2, 50 mg/kg Cd + 100 TiO2-NPs mg/L; Cd + NP3, 50 mg/kg Cd + 200 TiO2-NPs mg/L; Cd + NP4, 50 mg/kg Cd + 400 TiO2-NPs mg/L. Our results showed that the Cd stress significantly (p < 0.05) decreased leaf photosynthetic efficiency, stomatal traits, antioxidant enzyme activities, and the expression of their encoding genes and protein content. Moreover, Cd toxicity destabilized plant metabolism owing to greater accretion of hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels at vegetative and reproductive stages. However, TiO2-NPs application improved leaf photosynthetic efficacy, stomatal traits, and protein and antioxidant enzyme activities under Cd toxicity. Application of TiO2-NPs decreased the uptake and accumulation of Cd in plants and levels of H2O2 and MDA, thereby helping to relieve Cd-induced peroxidation damage of leaf membrane lipids by enhancing the activities of different enzymes like ascorbate peroxidase (APX), catalase (CAT), peroxidase (POS), and superoxide dismutase (SOD). Average increases in SOD, APX, CAT, and POS activities of 120.5 and 110.4%, 116.2 and 123.4%, 41.4 and 43.8%, and 36.6 and 34.2% in MXZ-2 and XGZ, respectively, were noted in Cd + NP3 treatment across the growth stages as compared with Cd-stressed plants without NPs. Moreover, the correlation analysis revealed that the leaf net photosynthetic rate is strongly associated with leaf proline and soluble protein content, suggesting that a higher net photosynthetic rate results in higher leaf proline and soluble protein content. Of the treatments, the Cd + NP3 (50 mg/kg Cd + 200 mg/L TiO2-NPs) performed the best for both fragrant rice cultivars under Cd toxicity. Our results showed that TiO2-NPs strengthened rice metabolism through an enhanced antioxidant defense system across the growth stages, thereby improving plant physiological activity and biochemical characteristics under Cd toxicity.

14.
RSC Adv ; 13(16): 10873-10883, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37033434

RESUMO

Protoporphyrinogen oxidase (PPO) is a key enzyme in chlorophyll and heme biosynthesis, and the development of its inhibitors is of great importance both in the pharmaceutical and pesticide industries. However, the currently developed PPO inhibitors have insignificant bio-selectivity and have a serious impact on non-target organisms. In this study, a docking-based virtual screening approach combined with bio-activity testing was used to obtain novel selective inhibitors of PPO. The results of the bio-activity test showed that thirteen compounds showed 10-fold selectivity over human PPO. And the best selective compound, ZINC70338, has a K i value of 2.21 µM for Nicotiana tabacum PPO and >113-fold selectivity for human PPO. The selectivity mechanism of ZINC70338 in different species of PPO was then analyzed by molecular dynamics simulations to provide a design basis and theoretical guidance for the design of novel selective inhibitors.

16.
Nucleic Acids Res ; 51(4): 1984-1995, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744495

RESUMO

Anti-CRISPR proteins are encoded by phages to inhibit the CRISPR-Cas systems of the hosts. AcrIIC5 inhibits several naturally high-fidelity type II-C Cas9 enzymes, including orthologs from Neisseria meningitidis (Nme1Cas9) and Simonsiella muelleri (SmuCas9). Here, we solve the structure of AcrIIC5 in complex with Nme1Cas9 and sgRNA. We show that AcrIIC5 adopts a novel fold to mimic the size and charge distribution of double-stranded DNA, and uses its negatively charged grooves to bind and occlude the protospacer adjacent motif (PAM) binding site in the target DNA cleft of Cas9. AcrIIC5 is positioned into the crevice between the WED and PI domains of Cas9, and one end of the anti-CRISPR interacts with the phosphate lock loop and a linker between the RuvC and BH domains. We employ biochemical and mutational analyses to build a model for AcrIIC5's mechanism of action, and identify residues on both the anti-CRISPR and Cas9 that are important for their interaction and inhibition. Together, the structure and mechanism of AcrIIC5 reveal convergent evolution among disparate anti-CRISPR proteins that use a DNA-mimic strategy to inhibit diverse CRISPR-Cas surveillance complexes, and provide new insights into a tool for potent inhibition of type II-C Cas9 orthologs.


Assuntos
Sistemas CRISPR-Cas , Neisseria meningitidis , Neisseriaceae , Proteínas Virais , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , DNA/química , Neisseria meningitidis/virologia , Neisseriaceae/virologia , Proteínas Virais/metabolismo
17.
RSC Adv ; 13(3): 1727-1737, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712647

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that poses a serious global public health threat. Due to the high incidence of adverse reactions associated with conventional treatment regimens, there is an urgent need for better alternative therapies. CpG oligodeoxynucleotides (CpG ODNs) are synthetic oligodeoxyribonucleotide sequences. They can induce a Th1-type immune response by stimulating Toll-like receptors (TLRs) in mammalian immune cells, thus killing Mtb. However, due to the negative charge and easy degradation of CpG ODNs, it is necessary to deliver them into cells using nanomaterials. PCN-224 (hereinafter referred to as PCN), as a metal-organic framework based on zirconium ions and porphyrin ligands, not only has the advantage of high drug loading capacity, but also the porphyrin molecule in it is a type of photosensitizer, which allows these nanocomposites to play a role in photodynamic therapy (PDT) while delivering CpG ODNs. In addition, since Mtb mainly exists in macrophages, targeting anti-TB agents to macrophages is helpful to improve the anti-TB effect. Phosphatidylserine (PS) is a biological membrane phospholipid that is normally found on the inner side of cell membranes in, for example, plant and mammalian cells. When apoptosis occurs, PS can flip from the inner side of the cell membrane to the surface of the cell membrane, displaying a specific "eat-me" signal that can be recognized by specific receptors on macrophages. Therefore, we can use this macrophage-targeting property of PS to construct bio-inspired targeted drug delivery systems. In this study, we constructed PCN-CpG@PS nanocomposites. PCN-CpG@PS, combining PDT and immunotherapy, is designed to target macrophages at the site of a lesion and kill latent Mtb. We physically characterized the nanocomposites and validated their bactericidal ability in vitro and their ability to stimulate the immune system in vivo. The results demonstrated that the targeted nanocomposites have certain in vitro antituberculosis efficacy with good safety.

18.
Sci Total Environ ; 859(Pt 2): 160206, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36400297

RESUMO

Soil organic carbon (SOC) is related to soil fertility, crop yield, and climate change mitigation. Paddy soil is a significant carbon (C) sink, but its C sequestration potential has not been realized as the various driving factors are still not fully understood. We performed a 5-year paddy field experiment in southern China to estimate tillage effects on SOC accumulation and its relation with soil bacteria. The C input from rice residue, SOC content, CO2 flux, soil bacterial community composition, and predicted functions were analyzed. No-tillage (NT) increased (p < 0.05) rice residue C inputs (by 12.6 %-15.9 %), SOC (by 40 % at the surface soil layer compared with conventional tillage, CT), and CO2 fluxes compared with reduced tillage (RT) and CT. Also, NT significantly altered the soil bacterial community. The random forest model showed that the predicted bacterial functions of "Degradation/Utilization/Assimilation Other", "C1 Compound Assimilation", and "Amin and Polyamine Degradation" were the most important functions associated with SOC accumulation. Analysis of metabolic pathway differences indicated that NT significantly decreased the BENZCOA-PWY (anaerobic aromatic compound degradation) and the AST-PWY (L-arginine degradation II). Therefore, the rapid paddy SOC increase is associated with both residue C input (from higher rice yields) and the degradation functions regulated by soil bacteria.


Assuntos
Oryza , Solo , Solo/química , Carbono/metabolismo , Agricultura , Dióxido de Carbono/metabolismo , Oryza/química , Bactérias/metabolismo
19.
Rev Esp Enferm Dig ; 115(8): 460-461, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36263831

RESUMO

An esophagogastroduodenoscopy revealed a submucosal lesion in the gastric cardia of a 55-year-old man.Endoscopic ultrasonography showed a hypoechoic echo lesion originated from the muscularis propria layer considering a leiomyoma or stromal tumor.a submucosal tunneling endoscopic resection was successfully performed to remove the lesion and the diagnosis is hepatoid adenocarcinoma.This is the first report on a case of gastric HAC originated from submucous layer.


Assuntos
Leiomioma , Neoplasias Gástricas , Masculino , Humanos , Pessoa de Meia-Idade , Cárdia/diagnóstico por imagem , Cárdia/cirurgia , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Gastroscopia , Mucosa Gástrica/diagnóstico por imagem , Mucosa Gástrica/cirurgia , Mucosa Gástrica/patologia , Leiomioma/diagnóstico por imagem , Leiomioma/cirurgia , Resultado do Tratamento , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...