Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2785, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555347

RESUMO

Topological materials with boundary (surface/edge/hinge) states have attracted tremendous research interest. Additionally, unconventional (obstructed atomic) materials have recently drawn lots of attention owing to their obstructed boundary states. Experimentally, Josephson junctions (JJs) constructed on materials with boundary states produce the peculiar boundary supercurrent, which was utilized as a powerful diagnostic approach. Here, we report the observations of boundary supercurrent in NiTe2-based JJs. Particularly, applying an in-plane magnetic field along the Josephson current can rapidly suppress the bulk supercurrent and retain the nearly pure boundary supercurrent, namely the magnetic field filtering of supercurrent. Further systematic comparative analysis and theoretical calculations demonstrate the existence of unconventional nature and obstructed hinge states in NiTe2, which could produce hinge supercurrent that accounts for the observation. Our results reveal the probable hinge states in unconventional metal NiTe2, and demonstrate in-plane magnetic field as an efficient method to filter out the bulk contributions and thereby to highlight the hinge states hidden in topological/unconventional materials.

2.
Research (Wash D C) ; 6: 0042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930816

RESUMO

Two-dimensional (2D) materials have gained lots of attention due to the potential applications. In this work, we propose that based on first-principles calculations, the (2 × 2) patterned PtTe2 monolayer with kagome lattice formed by the well-ordered Te vacancy (PtTe1.75) hosts large and tunable spin Hall conductivity (SHC) and excellent hydrogen evolution reaction (HER) activity. The unconventional nature relies on the A1 @ 1b band representation of the highest valence band without spin-orbit coupling (SOC). The large SHC comes from the Rashba SOC in the noncentrosymmetric structure induced by the Te vacancy. Even though it has a metallic SOC band structure, the ℤ2 invariant is well defined because of the existence of the direct bandgap and is computed to be nontrivial. The calculated SHC is as large as 1.25 × 103 ℏ e (Ω cm)-1 at the Fermi level (EF ). By tuning the chemical potential from EF - 0.3 to EF + 0.3 eV, it varies rapidly and monotonically from -1.2 × 103 to 3.1 × 1 0 3 ℏ e Ω   cm - 1 . In addition, we also find that the Te vacancy in the patterned monolayer can induce excellent HER activity. Our results not only offer a new idea to search 2D materials with large SHC, i.e., by introducing inversion-symmetry breaking vacancies in large SOC systems, but also provide a feasible system with tunable SHC (by applying gate voltage) and excellent HER activity.

3.
Nanotechnology ; 31(31): 315713, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32311678

RESUMO

The thermoelectric, phonon transport, and electronic transport properties of two-dimensional magnet CrI3 are systematically investigated by combining density functional theory with Boltzmann transport theory. A low lattice thermal conductivity of 1.355 W m-1K-1 is presented at 300 K due to the low Debye temperature and phonon group velocity. The acoustic modes dominate the lattice thermal conductivity, and the longitudinal acoustic mode has the largest contribution of 42.31% on account of its relatively large phonon group velocity and phonon lifetime. The high band degeneracy and the peaky density of states near the conduction band minimum appear for the CrI3 monolayer, which is beneficial for forming a significantly increased Seebeck coefficient (1561 µV K-1). Furthermore, the thermoelectric figure of merit is calculated reasonably, and the value is 1.57 for the optimal n-type doping level at 900 K. N-type doping maintains a higher thermoelectric conversion efficiency than p-type doping throughout the temperature range, while the difference gradually increases as the temperature rises. Our investigation may provide some theoretical support for the application of the CrI3 monolayer in the thermoelectric field.

4.
Data Brief ; 10: 69-74, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27942571

RESUMO

The mutual control of the electric and magnetic properties of a multiferroic solid is of fundamental and great technological importance. In this article, the synthesis procedure of La0.2Pb0.7Fe12O19 ceramics was briefly described and the data acquired for the materials characterization is presented. This data article is related to the research article-Acta Mater. 2016, 121, 144 (j.actamat.2016.08.083). Electric polarization hysteresis loop and I-V curve, which help to confirm the ferroelectricity of La0.2Pb0.7Fe12O19 ceramics, were presented. Strong magnetic polarization data was also presented. The great variation of the dielectric constants along with the magnetic field has been presented which helped to demonstrat the giant magnetocapacitance of La0.2Pb0.7Fe12O19. All the datasets were collected at room temperature. Large ferroelectricity, strong magnetism and colossal magneto-capacitance effect have been all realized in one single phase La0.2Pb0.7Fe12O19 at room temperature.

5.
PLoS One ; 11(12): e0167084, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27935996

RESUMO

We report here realization of ferroelectricity, ferromagnetism and magnetocapacitance effect in singleSrFe12O19ceramic at room temperature. The ceramics demonstrate a saturated polarization hysteresis loop, two nonlinear I-V peaks and large anomaly of dielectric constant near Curie temperature, which confirm the intrinsic ferroelectricity of SrFe12O19 ceramicswith subsequent heat-treatment in O2atmosphere. The remnant polarization of the SrFe12O19 ceramic is estimated to be 103µC/cm2. The ceramic also exhibits strong ferromagnetic characterization, the coercive field and remnant magnetic moment are 6192Oe and 35.8emu/g, respectively. Subsequent annealing SrFe12O19 ceramics in O2 plays a key role on revealing its intrinsic ferroelectricity and improving the ferromagnetism through transforming Fe2+ into Fe3+. By applying a magnetic field, the capacitance demonstrates remarkable change along with B field, the maximum rate of change in ε (Δε(B)/ε(0)) is 1174%, which reflects a giant magnetocapacitance effect in SrFe12O19. XPS and molecular magnetic moment measurements confirmed the transformation of Fe2+ into Fe3+ and removal of oxygen vacancies upon O2 heat treatment. These combined functional responses in SrFe12O19 ceramics opens substantial possibilities for applications in novel electric devices.


Assuntos
Cerâmica/química , Eletricidade , Fenômenos Magnéticos , Imãs/química , Algoritmos , Capacitância Elétrica , Ferro/química , Modelos Químicos , Oxirredução , Oxigênio/química , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...