Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712281

RESUMO

Non-alcoholic fatty liver disease (NAFLD) - characterized by excess accumulation of fat in the liver - now affects one third of the world's population. As NAFLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply-characterized cohort of patients spanning the full histopathologic spectrum of NAFLD. CRISPR-based genetic knockout of the top 100 TFs identified ZNF469 as a regulator of collagen expression in primary human hepatic stellate cells (HSCs). Gain- and loss-of-function studies established that ZNF469 regulates collagen genes and genes involved in matrix homeostasis through direct binding to gene bodies and regulatory elements. By integrating multiomic large-scale profiling of human biopsies with extensive experimental validation we demonstrate that ZNF469 is a transcriptional regulator of collagen in HSCs. Overall, these data nominate ZNF469 as a previously unrecognized determinant of NAFLD-associated liver fibrosis.

3.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559150

RESUMO

Chronic systemic inflammation contributes to a substantially elevated risk of myocardial infarction in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis that contribute to cardiovascular disease. Our objective was to study the effects of plasma from PLWH on endothelial cell (EC) function, with the hypothesis that cytokines and chemokines are major drivers of EC activation. We first broadly phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in adipose tissue in the subcutaneous adipose tissue of 59 PLWH using single cell transcriptomic analysis. We used CellChat to predict cell-cell interactions between ECs and other cells in the adipose tissue and Spearman correlation to measure the association between ECs and plasma cytokines. Finally, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk sequencing to study the direct effects ex-vivo. We observed that arterial and capillary ECs expressed higher interferon and tumor necrosis factor (TNF) receptors. Venous ECs had more interleukin (IL)-1R1 and ACKR1 receptors, and VSMCs had high significant IL-6R expression. CellChat predicted ligand-receptor interactions between adipose tissue immune cells as senders and capillary ECs as recipients in TNF-TNFRSF1A/B interactions. Chemokines expressed largely by capillary ECs were predicted to bind ACKR1 receptors on venous ECs. Beyond the adipose tissue, the proportion of venous ECs and VSMCs were positively plasma IL-6. In ex-vivo experiments, HAECs cultured with plasma-conditioned media from PLWH expressed transcripts that enriched for the TNF-α and reactive oxidative phosphorylation pathways. In conclusion, ECs demonstrate heterogeneity in cytokine and chemokine receptor expression. Further research is needed to fully elucidate the role of cytokines and chemokines in EC dysfunction and to develop effective therapeutic strategies.

4.
Laryngoscope ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450771

RESUMO

OBJECTIVES: Recent immunologic study of the adaptive immune repertoire in the subglottic airway demonstrated high-frequency T cell clones that do not overlap between individuals. However, the anatomic distribution and antigenic target of the T cell repertoire in the proximal airway mucosa remain unresolved. METHODS: Single-cell RNA sequencing of matched scar and unaffected mucosa from idiopathic subglottic stenosis patients (iSGS, n = 32) was performed and compared with airway mucosa from healthy controls (n = 10). T cell receptor (TCR) sequences were interrogated via similarity network analysis to explore antigenic targets using the published algorithm: Grouping of Lymphocyte Interactions by Paratope Hotspots (GLIPH2). RESULTS: The mucosal T cell repertoire in healthy control airways consisted of highly expressed T cell clones conserved across anatomic subsites (trachea, bronchi, bronchioles, and lung). In iSGS, high-frequency clones were equally represented in both scar and adjacent non-scar tissue. Significant differences in repertoire structure between iSGS scar and unaffected mucosa was observed, driven by unique low-frequency clones. GLIPH2 results suggest low-frequency clones share targets between multiple iSGS patients. CONCLUSION: Healthy airway mucosa has a highly conserved T cell repertoire across multiple anatomic subsites. Similarly, iSGS patients have highly expressed T cell clones present in both scar and unaffected mucosa. iSGS airway scar possesses an abundance of less highly expanded clones with predicted antigen targets shared between patients. Interrogation of these shared motifs suggests abundant adaptive immunity to viral targets in iSGS airway scar. These results provide insight into disease pathogenesis and illuminate new treatment strategies in iSGS. LEVEL OF EVIDENCE: Level NA Laryngoscope, 2024.

5.
Am J Respir Crit Care Med ; 209(9): 1091-1100, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285918

RESUMO

Rationale: Quantitative interstitial abnormalities (QIAs) are early measures of lung injury automatically detected on chest computed tomography scans. QIAs are associated with impaired respiratory health and share features with advanced lung diseases, but their biological underpinnings are not well understood. Objectives: To identify novel protein biomarkers of QIAs using high-throughput plasma proteomic panels within two multicenter cohorts. Methods: We measured the plasma proteomics of 4,383 participants in an older, ever-smoker cohort (COPDGene [Genetic Epidemiology of Chronic Obstructive Pulmonary Disease]) and 2,925 participants in a younger population cohort (CARDIA [Coronary Artery Disease Risk in Young Adults]) using the SomaLogic SomaScan assays. We measured QIAs using a local density histogram method. We assessed the associations between proteomic biomarker concentrations and QIAs using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, and study center (Benjamini-Hochberg false discovery rate-corrected P ⩽ 0.05). Measurements and Main Results: In total, 852 proteins were significantly associated with QIAs in COPDGene and 185 in CARDIA. Of the 144 proteins that overlapped between COPDGene and CARDIA, all but one shared directionalities and magnitudes. These proteins were enriched for 49 Gene Ontology pathways, including biological processes in inflammatory response, cell adhesion, immune response, ERK1/2 regulation, and signaling; cellular components in extracellular regions; and molecular functions including calcium ion and heparin binding. Conclusions: We identified the proteomic biomarkers of QIAs in an older, smoking population with a higher prevalence of pulmonary disease and in a younger, healthier community cohort. These proteomics features may be markers of early precursors of advanced lung diseases.


Assuntos
Biomarcadores , Proteômica , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Masculino , Biomarcadores/sangue , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/sangue , Adulto , Idoso , Estudos de Coortes , Tomografia Computadorizada por Raios X , Doenças Pulmonares Intersticiais/genética , Adulto Jovem
7.
JAMA Oncol ; 10(2): 193-201, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095878

RESUMO

Importance: Agents targeting programmed death ligand 1 (PD-L1) have demonstrated efficacy in triple-negative breast cancer (TNBC) when combined with chemotherapy and are now the standard of care in patients with PD-L1-positive metastatic disease. In contrast to microtubule-targeting agents, the effect of combining platinum compounds with programmed cell death 1 (PD-1)/PD-L1 immunotherapy has not been extensively determined. Objective: To evaluate the efficacy of atezolizumab with carboplatin in patients with metastatic TNBC. Design, Setting, and Participants: This phase 2 randomized clinical trial was conducted in 6 centers from August 2017 to June 2021. Interventions: Patients with metastatic TNBC were randomized to receive carboplatin area under the curve (AUC) 6 alone or with atezolizumab, 1200 mg, every 3 weeks until disease progression or unacceptable toxic effects with a 3-year duration of follow-up. Main Outcome and Measures: The primary end point was investigator-assessed progression-free survival (PFS). Secondary end points included overall response rate (ORR), clinical benefit rate (CBR), and overall survival (OS). Other objectives included correlation of response with tumor PD-L1 levels, tumor-infiltrating lymphocytes (TILs), tumor DNA- and RNA-sequenced biomarkers, TNBC subtyping, and multiplex analyses of immune markers. Results: All 106 patients with metastatic TNBC who were enrolled were female with a mean (range) age of 55 (27-79) years, of which 12 (19%) identified as African American/Black, 1 (1%) as Asian, 73 (69%) as White, and 11 (10%) as unknown. Patients were randomized and received either carboplatin (n = 50) or carboplatin and atezolizumab (n = 56). The combination improved PFS (hazard ratio [HR], 0.66; 95% CI, 0.44-1.01; P = .05) from a median of 2.2 to 4.1 months, increased ORR from 8.0% (95% CI, 3.2%-18.8%) to 30.4% (95% CI, 19.9%-43.3%), increased CBR at 6 months from 18.0% (95% CI, 9.8%-30.1%) to 37.5% (95% CI, 26.0%-50.6%), and improved OS (HR, 0.60; 95% CI, 0.37-0.96; P = .03) from a median of 8.6 to 12.6 months. Subgroup analysis showed PD-L1-positive tumors did not benefit more from adding atezolizumab (HR, 0.62; 95% CI, 0.23-1.65; P = .35). Patients with high TILs (HR, 0.12; 95% CI, 0.30-0.50), high mutation burden (HR, 0.50; 95% CI, 0.23-1.06), and prior chemotherapy (HR, 0.59; 95% CI, 0.36-0.95) received greater benefit on the combination. Patients with obesity and patients with more than 125 mg/dL on-treatment blood glucose levels were associated with better PFS (HR, 0.35; 95% CI, 0.10-1.80) on the combination. TNBC subtypes benefited from adding atezolizumab, except the luminal androgen receptor subtype. Conclusions and Relevance: In this randomized clinical trial, the addition of atezolizumab to carboplatin significantly improved survival of patients with metastatic TNBC regardless of PD-L1 status. Further, lower risk of disease progression was associated with increased TILs, higher mutation burden, obesity, and uncontrolled blood glucose levels. Trial Registration: ClinicalTrials.gov Identifier: NCT03206203.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Carboplatina/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Antígeno B7-H1/imunologia , Glicemia , Ligantes , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores , Progressão da Doença , Obesidade , Apoptose
8.
Laryngoscope ; 134(4): 1757-1764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37787469

RESUMO

OBJECTIVES: Recent translational scientific efforts in subglottic stenosis (SGS) support a disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. Given the observed immune cell infiltrate in SGS, we sought to test the hypothesis that SGS cases possessed a low diversity (highly clonal) adaptive immune response when compared with healthy controls. METHODS: Single cell RNA sequencing (scRNA-seq) of subglottic mucosal scar in iSGS (n = 24), iLTS (n = 8), and healthy controls (n = 7) was performed. T cell receptor (TCR) sequences were extracted, analyzed, and used to construct repertoire structure, compare diversity, interrogate overlap, and define antigenic targets using the Immunarch bioinformatics pipeline. RESULTS: The proximal airway mucosa in health and disease are equally diverse via Hill framework quantitation (iSGS vs. iLTS vs. Control, p > 0.05). Repertoires do not significantly overlap between individuals (Morisita <0.02). Among iSGS patients, clonality of the TCR repertoire is driven by CD8+ T cells, and iSGS patients possess numerous TCRs targeting viral and intercellular pathogens. High frequency clonotypes do not map to known targets in public datasets. CONCLUSION: SGS cases do not possess a lower diversity adaptive immune infiltrate when compared with healthy controls. Interestingly, the TCR repertoire in both health and disease contains a restricted number of high frequency clonotypes that do not significantly overlap between individuals. The target of the high frequency clonotypes in health and disease remain unresolved. LEVEL OF EVIDENCE: NA Laryngoscope, 134:1757-1764, 2024.


Assuntos
Laringoestenose , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos
9.
Hypertension ; 81(3): 516-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675576

RESUMO

BACKGROUND: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS: Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS: Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS: Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.


Assuntos
Hipertensão , Lipídeos , Cloreto de Sódio na Dieta , Humanos , Cloreto de Sódio na Dieta/metabolismo , Canais Epiteliais de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Eicosanoides , Pressão Sanguínea/fisiologia
10.
Arthritis Rheumatol ; 76(5): 684-695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38111131

RESUMO

OBJECTIVE: High-density lipoprotein (HDL) has well-characterized anti-atherogenic cholesterol efflux and antioxidant functions. Another function of HDL uncharacterized in rheumatoid arthritis (RA) is its ability to transport microRNAs (miRNAs) between cells and thus alter cellular function. The study's purpose was to determine if HDL-miRNA cargo is altered and affects inflammation in RA. METHODS: HDL-microRNAs were characterized in 30 RA and 30 control participants by next generation sequencing and quantitative polymerase chain reaction. The most abundant differentially expressed miRNA was evaluated further. The function of miR-1246 was assessed by miRNA mimics, antagomiRs, small interfering RNA knockdown, and luciferase assays. Monocyte-derived macrophages were treated with miR-1246-loaded HDL and unmodified HDL from RA and control participants to measure delivery of miR-1246 and its effect on interleukin-6 (IL-6). RESULTS: The most abundant miRNA on HDL was miR-1246; it was significantly enriched two-fold on HDL from RA versus control participants. HDL-mediated miR-1246 delivery to macrophages significantly increased IL6 expression 43-fold. miR-1246 delivery significantly decreased DUSP3 1.5-fold and DUSP3 small interfering RNA knockdown increased macrophage IL6 expression. Luciferase assay indicated DUSP3 is a direct target of miR-1246. Unmodified HDL from RA delivered 1.6-fold more miR-1246 versus control participant HDL. Unmodified HDL from both RA and control participants attenuated activated macrophage IL6 expression, but this effect was significantly blunted in RA so that IL6 expression was 3.4-fold higher after RA versus control HDL treatment. CONCLUSION: HDL-miR-1246 was increased in RA versus control participants and delivery of miR-1246 to macrophages increased IL-6 expression by targeting DUSP3. The altered HDL-miRNA cargo in RA blunted HDL's anti-inflammatory effect.


Assuntos
Artrite Reumatoide , Interleucina-6 , Lipoproteínas HDL , Macrófagos , MicroRNAs , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , MicroRNAs/metabolismo , Lipoproteínas HDL/farmacologia , Lipoproteínas HDL/metabolismo , Pessoa de Meia-Idade , Masculino , Feminino , Interleucina-6/metabolismo , Macrófagos/metabolismo , Estudos de Casos e Controles , Inflamação/metabolismo , Adulto , Idoso
11.
Cell Genom ; 3(10): 100409, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37868034

RESUMO

Genomic and transcriptomic analysis has furthered our understanding of many tumors. Yet, thyroid cancer management is largely guided by staging and histology, with few molecular prognostic and treatment biomarkers. Here, we utilize a large cohort of 251 patients with 312 samples from two tertiary medical centers and perform DNA/RNA sequencing, spatial transcriptomics, and multiplex immunofluorescence to identify biomarkers of aggressive thyroid malignancy. We identify high-risk mutations and discover a unique molecular signature of aggressive disease, the Molecular Aggression and Prediction (MAP) score, which provides improved prognostication over high-risk mutations alone. The MAP score is enriched for genes involved in epithelial de-differentiation, cellular division, and the tumor microenvironment. The MAP score also identifies aggressive tumors with lymphocyte-rich stroma that may benefit from immunotherapy. Future clinical profiling of the stromal microenvironment of thyroid cancer could improve prognostication, inform immunotherapy, and support development of novel therapeutics for thyroid cancer and other stroma-rich tumors.

12.
Comput Struct Biotechnol J ; 21: 4044-4055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664174

RESUMO

Single-cell sequencing have been widely used to characterize cellular heterogeneity. Sample multiplexing where multiple samples are pooled together for single-cell experiments, attracts wide attention due to its benefits of increasing capacity, reducing costs, and minimizing batch effects. To analyze multiplexed data, the first crucial step is to demultiplex, the process of assigning cells to individual samples. Inaccurate demultiplexing will create false cell types and result in misleading characterization. We propose scDemultiplex, which models hashtag oligo (HTO) counts with beta-binomial distribution and uses an iterative strategy for further refinement. Compared with seven existing demultiplexing approaches, scDemultiplex achieved great performance in both high-quality and low-quality data. Additionally, scDemultiplex can be combined with other approaches to improve their performance.

13.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37707956

RESUMO

BACKGROUNDCardiorenal syndrome (CRS) - renal injury during heart failure (HF) - is linked to high morbidity. Whether circulating extracellular vesicles (EVs) and their RNA cargo directly impact its pathogenesis remains unclear.METHODSWe investigated the role of circulating EVs from patients with CRS on renal epithelial/endothelial cells using a microfluidic kidney-on-chip (KOC) model. The small RNA cargo of circulating EVs was regressed against serum creatinine to prioritize subsets of functionally relevant EV-miRNAs and their mRNA targets investigated using in silico pathway analysis, human genetics, and interrogation of expression in the KOC model and in renal tissue. The functional effects of EV-RNAs on kidney epithelial cells were experimentally validated.RESULTSRenal epithelial and endothelial cells in the KOC model exhibited uptake of EVs from patients with HF. HF-CRS EVs led to higher expression of renal injury markers (IL18, LCN2, HAVCR1) relative to non-CRS EVs. A total of 15 EV-miRNAs were associated with creatinine, targeting 1,143 gene targets specifying pathways relevant to renal injury, including TGF-ß and AMPK signaling. We observed directionally consistent changes in the expression of TGF-ß pathway members (BMP6, FST, TIMP3) in the KOC model exposed to CRS EVs, which were validated in epithelial cells treated with corresponding inhibitors and mimics of miRNAs. A similar trend was observed in renal tissue with kidney injury. Mendelian randomization suggested a role for FST in renal function.CONCLUSIONPlasma EVs in patients with CRS elicit adverse transcriptional and phenotypic responses in a KOC model by regulating biologically relevant pathways, suggesting a role for EVs in CRS.TRIAL REGISTRATIONClinicalTrials.gov NCT03345446.FUNDINGAmerican Heart Association (AHA) (SFRN16SFRN31280008); National Heart, Lung, and Blood Institute (1R35HL150807-01); National Center for Advancing Translational Sciences (UH3 TR002878); and AHA (23CDA1045944).


Assuntos
Síndrome Cardiorrenal , Vesículas Extracelulares , Insuficiência Cardíaca , MicroRNAs , Humanos , Células Endoteliais/metabolismo , Síndrome Cardiorrenal/metabolismo , Rim/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Insuficiência Cardíaca/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
Front Physiol ; 14: 1208270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534363

RESUMO

Introduction: Salt sensitivity of blood pressure is a phenomenon in which blood pressure changes according to dietary sodium intake. Our previous studies found that high salt activates antigen presenting cells, resulting in the development of hypertension. The mechanisms by which salt-induced immune cell activation is regulated in salt sensitivity of blood pressure are unknown. In the current study, we investigated dietary salt-induced effects on the renin-angiotensin-aldosterone system (RAAS) gene expression in myeloid immune cells and their impact on salt sensitive hypertension in humans. Methods: We performed both bulk and single-cell sequencing analysis on immune cells with in vitro and in vivo high dietary salt treatment in humans using a rigorous salt-loading/depletion protocol to phenotype salt-sensitivity of blood pressure. We also measured plasma renin and aldosterone using radioimmunoassay. Results: We found that while in vitro high sodium exposure downregulated the expression of renin, renin binding protein and renin receptor, there were no significant changes in the genes of the renin-angiotensin system in response to dietary salt loading and depletion in vivo. Plasma renin in salt sensitive individuals tended to be lower with a blunted response to the salt loading/depletion challenge as previously reported. Discussion: These findings suggest that unlike systemic RAAS, acute changes in dietary salt intake do not regulate RAAS expression in myeloid immune cells.

15.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444556

RESUMO

MOTIVATION: Extracellular vesicles (EVs) are produced and released by most cells and are now recognized to play a role in intercellular communication through the delivery of molecular cargo, including proteins, lipids, and RNA. Small RNA sequencing (small RNA-seq) has been widely used to characterize the small RNA content in EVs. However, there is a lack of a systematic assessment of the quality, technical biases, RNA composition, and RNA biotypes enrichment for small RNA profiling of EVs across cell types, biofluids, and conditions. METHODS: We collected and reanalyzed small RNA-seq datasets for 2756 samples from 83 studies involving 55 with EVs only and 28 with both EVs and matched donor cells. We assessed their quality by the total number of reads after adapter trimming, the overall alignment rate to the host and non-host genomes, and the proportional abundance of total small RNA and specific biotypes, such as miRNA, tRNA, rRNA, and Y RNA. RESULTS: We found that EV extraction methods varied in their reproducibility in isolating small RNAs, with effects on small RNA composition. Comparing proportional abundances of RNA biotypes between EVs and matched donor cells, we discovered that rRNA and tRNA fragments were relatively enriched, but miRNAs and snoRNA were depleted in EVs. Except for the export of eight miRNAs being context-independent, the selective release of most miRNAs into EVs was study-specific. CONCLUSION: This work guides quality control and the selection of EV isolation methods and enhances the interpretation of small RNA contents and preferential loading in EVs.

16.
Res Sq ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292825

RESUMO

Background: Idiopathic subglottic stenosis (iSGS) is a rare fibrotic disease of the proximal airway affecting adult Caucasian women nearly exclusively. Life-threatening ventilatory obstruction occurs secondary to pernicious subglottic mucosal scar. Disease rarity and wide geographic patient distribution has previously limited substantive mechanistic investigation into iSGS pathogenesis. Result: By harnessing pathogenic mucosa from an international iSGS patient cohort and single-cell RNA sequencing, we unbiasedly characterize the cell subsets in the proximal airway scar and detail their molecular phenotypes. Results show that the airway epithelium in iSGS patients is depleted of basal progenitor cells, and the residual epithelial cells acquire a mesenchymal phenotype. Observed displacement of bacteria beneath the lamina propria provides functional support for the molecular evidence of epithelial dysfunction. Matched tissue microbiomes support displacement of the native microbiome into the lamina propria of iSGS patients rather than disrupted bacterial community structure. However, animal models confirm that bacteria are necessary for pathologic proximal airway fibrosis and suggest an equally essential role for host adaptive immunity. Human samples from iSGS airway scar demonstrate adaptive immune activation in response to the proximal airway microbiome of both matched iSGS patients and healthy controls. Clinical outcome data from iSGS patients suggests surgical extirpation of airway scar and reconstitution with unaffected tracheal mucosa halts the progressive fibrosis. Conclusion: Our data support an iSGS disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. These results refine our understanding of iSGS and implicate shared pathogenic mechanisms with distal airway fibrotic diseases.

17.
Int Forum Allergy Rhinol ; 13(12): 2133-2143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37302116

RESUMO

BACKGROUND: Central compartment atopic disease (CCAD) is an emerging phenotype of chronic rhinosinusitis with nasal polyposis (CRSwNP) characterized by prominent central nasal inflammatory changes. This study compares the inflammatory characteristics of CCAD relative to other phenotypes of CRSwNP. METHODS: A cross-sectional analysis of data from a prospective clinical study was performed on patients with CRSwNP who were undergoing endoscopic sinus surgery (ESS). Patients with CCAD, aspirin-exacerbated respiratory disease (AERD), allergic fungal rhinosinusitis (AFRS), and non-typed CRSwNP (CRSwNP NOS) were included and mucus cytokine levels and demographic data were analyzed for each group. Chi-squared/Mann-Whitney U tests and partial least squares discriminant analysis (PLS-DA) were performed for comparison and classification. RESULTS: A total of 253 patients were analyzed (CRSwNP, n = 137; AFRS, n = 50; AERD, n = 42; CCAD, n = 24). Patients with CCAD were the least likely to have comorbid asthma (p = 0.0004). The incidence of allergic rhinitis in CCAD patients did not vary significantly compared to patients with AFRS and AERD, but was higher compared to patients with CRSwNP NOS (p = 0.04). On univariate analysis, CCAD was characterized by less inflammatory burden, with reduced levels of interleukin 6 (IL-6), IL-8, interferon gamma (IFN-γ), and eotaxin relative to other groups and significantly lower type 2 cytokines (IL-5, IL-13) relative to both AERD and AFRS. These findings were supported by multivariate PLS-DA, which clustered CCAD patients into a relatively homogenous low-inflammatory cytokine profile. CONCLUSIONS: CCAD has unique endotypic features compared to other patients with CRSwNP. The lower inflammatory burden may be reflective of a less severe variant of CRSwNP.


Assuntos
Sinusite Fúngica Alérgica , Asma Induzida por Aspirina , Pólipos Nasais , Rinite , Sinusite , Humanos , Rinite/epidemiologia , Estudos Transversais , Estudos Prospectivos , Sinusite/epidemiologia , Sinusite/cirurgia , Sinusite/microbiologia , Doença Crônica , Pólipos Nasais/cirurgia , Asma Induzida por Aspirina/epidemiologia , Citocinas
18.
Laryngoscope ; 133(12): 3506-3511, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37382162

RESUMO

OBJECTIVES: Idiopathic subglottic stenosis (iSGS) is an unexplained progressive fibrosis of the upper airway. iSGS almost exclusively affects women; as a result, female hormones (estrogen and progesterone) have been proposed to participate in the pathogenesis of iSGS. Our aim was to localize cell-specific gene expression of estrogen receptors (ESR1 and ESR2) and progesterone receptor (PGR) using an established iSGS single-cell RNA sequencing (scRNAseq) cell atlas. STUDY DESIGN: Ex vivo molecular study of airway scar and healthy mucosa from iSGS patients. METHODS: An established scRNAseq atlas consisting of 25,974 individually sequenced cells from subglottic scar (n = 7) or matched unaffected mucosa (n = 3) in iSGS patients was interrogated for RNA expression of ESR1, ESR2, and PGR. Results were quantified and compared across cell subsets, then visualized using Uniform Manifold Approximation and Projection (UMAP). Confirmatory protein assessment of endocrine receptors in fibroblasts from iSGS patients (n = 5) was performed via flow cytometry. RESULTS: The proximal airway mucosa in iSGS patients demonstrates differential expression of endocrine receptors (ESR1, ESR2, PGR). Within airway scar, endocrine receptors are primarily expressed by fibroblasts, immune cells, and endothelial cells. Fibroblasts show strong ESR1 and PGR expression, while immune cells possess RNA for both ESR1 and ESR2. Endothelial cells predominantly express ESR2. Epithelial cells in unaffected mucosa express all three receptors, which are all reduced in airway scar. CONCLUSIONS: scRNAseq data localized endocrine receptor expression to specific cell subsets. These results provide the foundation for future work interrogating how hormone-dependent mechanisms promote, sustain, or participate in iSGS disease pathogenesis. LEVEL OF EVIDENCE: NA; Basic science Laryngoscope, 133:3506-3511, 2023.


Assuntos
Cicatriz , Laringoestenose , Humanos , Feminino , Cicatriz/patologia , Células Endoteliais/patologia , Constrição Patológica/complicações , Laringoestenose/patologia , Expressão Gênica , Estrogênios , RNA
19.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162990

RESUMO

Persistent systemic inflammation in persons with HIV (PWH) is accompanied by an increased risk of metabolic disease. Yet, changes in the innate and adaptive immune system in PWH who develop metabolic disease remain poorly defined. Using unbiased approaches, we show that PWH with prediabetes/diabetes have a significantly higher proportion of circulating CD14 + monocytes complexed to T cells. The complexed CD3 + T cells and CD14 + monocytes demonstrate functional immune synapses, increased expression of proinflammatory cytokines, and greater glucose utilization. Furthermore, these complexes harbor more latent HIV DNA compared to CD14 + monocytes or CD4 + T cells. Our results demonstrate that circulating CD3 + CD14 + T cell-monocyte pairs represent functional dynamic cellular interactions that likely contribute to inflammation and, in light of their increased proportion, may have a role in metabolic disease pathogenesis. These findings provide an incentive for future studies to investigate T cell-monocyte immune complexes as mechanistic in HIV cure and diseases of aging. Highlights: Persons with HIV and diabetes have increased circulating CD3 + CD14 + T cell-monocyte complexes. CD3 + CD14 + T cell-monocytes are a heterogenous group of functional and dynamic complexes. We can detect HIV in T cell-monocyte complexes. The proportion of CD3 + CD14 + T cell-monocyte complexes is positively associated with blood glucose levels and negatively with plasma IL-10 and CD4 + T regulatory cells.

20.
Int Forum Allergy Rhinol ; 13(10): 1937-1948, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37057820

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a common colonizing pathogen in the upper respiratory tract and is associated with recalcitrant chronic rhinosinusitis (CRS). Herein we sought to characterize the effect of P. aeruginosa-derived flagellin on human sinonasal epithelial cell (HSNEC) immune responses and determine whether these pathways are disrupted in CRS. METHODS: Air-liquid interface cultures were established from CRS and healthy control donors. Cells were incubated with P. aeruginosa-derived flagellin for 24 hours and transcriptional changes were assessed using whole transcriptome RNA sequencing. Apical and basolateral secretion of the pro-inflammatory cytokines in interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 were measured after stimulation by lipopolysaccharide or flagellin and responses were compared between CRS and healthy control patients. RESULTS: HSNECs were weakly responsive to lipopolysaccharide, whereas flagellin stimulated a profound innate immune response dominated by TNF-α, IL-1ß, and IL-17 signaling and activation of the IL-17C/IL-23 axis. CRS-derived HNSECs showed an altered innate immune response to flagellin, characterized by a profound increase in TNF-α secretion coupled with reduced IL-6 secretion. CONCLUSIONS: Flagellin activates a potent innate immune response in HSNECs characterized by pro-inflammatory mediators and cytokines/chemokines associated with neutrophilic inflammation. HSNECs from CRS patients have a dysregulated innate immune response to flagellin characterized by an imbalance between IL-6 and TNF-α secretion.


Assuntos
Flagelina , Sinusite , Humanos , Flagelina/genética , Flagelina/metabolismo , Pseudomonas aeruginosa , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa , Lipopolissacarídeos , Imunidade Inata , Citocinas/metabolismo , Doença Crônica , Células Epiteliais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...