Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(1): 995-1006, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030845

RESUMO

Selenium (Se) is an essential element for human and animal health and has antioxidant, anticancer, and antiviral effects. However, more than 100 million people in China do not have enough Se in their diets, resulting in a state of low Se in the human body. Since the absorption of Se by crop seeds depends not only on the Se content in soil, there are many omissions and misjudgments in the division of Se-rich producing areas. Soil pH, total iron oxide content (TFe2O3), soil organic matter (SOM), and P and S contents were the main factors affecting Se migration and transformation in the soil-rice system. In this study, we compared the performance of the back propagation neural network (BP network) and multiple linear regression (MLR) using 177 pairs of soil-rice samples. Our results showed that the BP network had higher accuracy than MLR. The accuracy and precision of the prediction data met the requirements, and the prediction data were reliable. Based on the Se data of surface paddy fields, 26,900 ha of Se-rich rice planting area was planned using this model, accounting for 77% of the paddy field area. In the planned Se-rich area for rice, the proportion of soil Se content greater than 0.4 mg·kg-1 was only 5.29%. Our research is of great significance for the development of Se-rich lands.


Assuntos
Oryza , Selênio , Poluentes do Solo , Humanos , Solo/química , Selênio/análise , Antioxidantes , Sementes/química , China
2.
Sci Total Environ ; 903: 166573, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633402

RESUMO

Although anthropogenic contamination has been regarded as the most important source of potentially toxic elements (PTEs) in soils of large river delta plains, the extent to which human activities affect PTEs in soils is worth exploring. This study used high density geochemical data to distinguish source patterns of PTEs in soils of the Pearl River Delta Economic Zone, a large industrialized and urbanized area in China. Enrichment factor, discriminant analysis, principal components analysis, cumulative distribution function, and positive matrix factorization were used to identify sources of PTEs in soils. The results indicated that parent material was the most significant factor affecting geochemical characteristics of PTEs in soils. Median concentrations of Cd, Cr, Cu, Hg, Pb, and Zn were 0.400, 88.5, 40.5, 0.143, 43.0, and 116.0 mg/kg for stream sediments, 0.333, 75.7, 39.0, 0.121, 42.6, and 98.5 mg/kg for deep soils, and 0.365, 74.0, 45.1, 0.143, 44.6, and 119.5 mg/kg for surface soils, respectively, all of which exceed relevant reference standards. Compared with stream sediments and deep soils, surface soils exhibit substantial concentrations of PTEs. Chemical weathering and erosion of parent materials distributed in the Pearl River Delta were the main sources of PTEs in soils. Diffuse contamination and many small local contamination sources distributed throughout the study area were the most significant anthropogenic sources of PTEs in surface soils. Intensive human activities failed to change the soil geochemical characteristics derived from the parent material at the regional scale. However, it could induce non-point source pollution and local severe PTEs pollution in surface soils.

3.
Chemosphere ; 340: 139846, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598945

RESUMO

The selenium (Se)-deficient soil belt in China has gained widespread attention. During large-scale soil surveys in China, Se-rich soils within low-Se belts have been identified. However, the sources of Se in those soils and the controlling factors for their enrichment remain unclear. Here we summarize Se concentrations and spatial distributions in the Yuanzhou district of the Loess Plateau. We evaluated Se variations in soil profiles, Se migration into water bodies, and considered soil indicators, topographic characteristics and the influence of land-use types on soil Se concentrations. The average Se concentration in the topsoil of the Yuanzhou district was 0.164 µg/g. High-Se soils (>0.222 µg/g) were found in the western valley plain and the southern red bed hilly area, as well as sporadically in higher elevation forestland and grassland areas in the east. Enrichment of Se in the topsoil in the eastern and southern areas was primarily due to Se adsorption and accumulation by soil organic matter as well as enrichment in gypsum, berlinite, and clay minerals during soil formation. Widespread enrichment in the southern area was linked to high Se concentrations in red Tertiary sedimentary rocks. In the western area, enrichment of Se in topsoil was found on both sides of the Qingshui River at low elevations with gentle slopes, with river water being the primary carrier of Se enrichment. These findings provide valuable insights into the epigenetic geochemical behavior of soil Se in China's low-Se belt that accounts for development of Se-rich soils in the region.


Assuntos
Selênio , Solo , China , Florestas , Água
4.
Mar Environ Res ; 187: 105968, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36966684

RESUMO

The alluvial plain delta is vulnerable to complex land-sea interactions as a result of rising sea levels and increasing storm surges due to global environmental change. Topsoil samples (0-20 cm) from the Pearl River Delta (PRD) were subjected to periodic artificial saltwater inundation treatments with varying salinities (0, 35‰, 40‰, 50‰) for 50 days to explore the impacts of saltwater inundation on heavy metals (Cd, Pb, Zn) in soils. The inundation treatments reached dynamic equilibrium in approximately 20 days, and heavy metals were promoted to release into leachate. The extraction rate of heavy metals was highest with artificial saltwater at 40‰ salinity, which was generally attributed to pH variation, increasing ionic strength and reductive dissolution of Fe-Mn oxyhydroxides. However, once the salinity reached 50‰, a higher SO2- 4concentration could depress the release of heavy metals by providing more negative adsorption sites. Cd in soils was most likely to leach, followed by Zn, but Pb showed higher retention. After saltwater inundation, the bioavailability of heavy metals decreased in the order Cd > Zn > Pb. Redundancy analysis (RDA) results demonstrated that Cd and Zn are more susceptible to soluble salt ions in soils than Pb. The retention of Pb could be attributed to its larger ionic radius and reduced hydrated radius as well as the stable species under the pH conditions of the treatments. This study suggests that the migration of heavy metals could reduce the water quality and increase the ecological risk of the interaction zone between land and sea.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Rios , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental , Poluentes do Solo/análise , China , Metais Pesados/análise
5.
Bull Environ Contam Toxicol ; 109(5): 910-919, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35915172

RESUMO

To determine whether the national soil heavy metal standards (GB 15618-2018) are applicable to some carbonate and non-carbonate zones in Southwest China, rice and rhizosphere soil samples were collected in Chongqing and analyzed for heavy metal contents, pH, and other chemical parameters. In addition, regression analysis was also used to predict the risk threshold of soil heavy metals. The Cd risk screening value in GB 15618-2018 was strict for alkaline soils (pH > 7.5) as compared to those revealed in carbonate and non-carbonate areas, while the calculated pollution threshold for Cd in acidic soils (pH ≤ 5.5) in the non-carbonate area was lower than that in GB 15618-2018. Therefore, to improve the applicability of the evaluation results, a soil-crop system evaluation is recommended.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Cádmio/análise , Monitoramento Ambiental , Medição de Risco , Metais Pesados/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA